Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 150(1): 53-64, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22770214

RESUMEN

U1 snRNP (U1), in addition to its splicing role, protects pre-mRNAs from drastic premature termination by cleavage and polyadenylation (PCPA) at cryptic polyadenylation signals (PASs) in introns. Here, a high-throughput sequencing strategy of differentially expressed transcripts (HIDE-seq) mapped PCPA sites genome wide in divergent organisms. Surprisingly, whereas U1 depletion terminated most nascent gene transcripts within ~1 kb, moderate functional U1 level decreases, insufficient to inhibit splicing, dose-dependently shifted PCPA downstream and elicited mRNA 3' UTR shortening and proximal 3' exon switching characteristic of activated immune and neuronal cells, stem cells, and cancer. Activated neurons' signature mRNA shortening could be recapitulated by U1 decrease and antagonized by U1 overexpression. Importantly, we show that rapid and transient transcriptional upregulation inherent to neuronal activation physiology creates U1 shortage relative to pre-mRNAs. Additional experiments suggest cotranscriptional PCPA counteracted by U1 association with nascent transcripts, a process we term telescripting, ensuring transcriptome integrity and regulating mRNA length.


Asunto(s)
Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Animales , Línea Celular , Drosophila melanogaster , Estudio de Asociación del Genoma Completo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Células 3T3 NIH , Neuronas/metabolismo , Procesamiento de Término de ARN 3' , Empalme del ARN
2.
Nature ; 581(7809): 470-474, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461640

RESUMEN

The gut of healthy human neonates is usually devoid of viruses at birth, but quickly becomes colonized, which-in some cases-leads to gastrointestinal disorders1-4. Here we show that the assembly of the viral community in neonates takes place in distinct steps. Fluorescent staining of virus-like particles purified from infant meconium or early stool samples shows few or no particles, but by one month of life particle numbers increase to 109 per gram, and these numbers seem to persist throughout life5-7. We investigated the origin of these viral populations using shotgun metagenomic sequencing of virus-enriched preparations and whole microbial communities, followed by targeted microbiological analyses. Results indicate that, early after birth, pioneer bacteria colonize the infant gut and by one month prophages induced from these bacteria provide the predominant population of virus-like particles. By four months of life, identifiable viruses that replicate in human cells become more prominent. Multiple human viruses were more abundant in stool samples from babies who were exclusively fed on formula milk compared with those fed partially or fully on breast milk, paralleling reports that breast milk can be protective against viral infections8-10. Bacteriophage populations also differed depending on whether or not the infant was breastfed. We show that the colonization of the infant gut is stepwise, first mainly by temperate bacteriophages induced from pioneer bacteria, and later by viruses that replicate in human cells; this second phase is modulated by breastfeeding.


Asunto(s)
Lactancia Materna , Tracto Gastrointestinal/virología , Virus/aislamiento & purificación , Adulto , Bacteriólisis , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Heces/virología , Femenino , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Humanos , Lactante , Recién Nacido , Lisogenia , Masculino , Meconio/virología , Profagos/genética , Profagos/aislamiento & purificación , Virus/genética
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33771926

RESUMEN

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/genética , Antígenos CD4/genética , Catarrinos/genética , Catarrinos/virología , Variación Genética , VIH , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios , Alelos , Animales , Antígenos CD4/química , Evolución Molecular , Productos del Gen env/química , Humanos , Unión Proteica , Dominios Proteicos
4.
PLoS Med ; 20(6): e1004157, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37384638

RESUMEN

BACKGROUND: Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction. METHODS AND FINDINGS: We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021. Sixty-one CLL patients and 27 healthy controls received 2 doses of the Pfizer-BioNTech BNT162b2 vaccine, while 34 CLL patients and 3 healthy controls received 2 doses of the Moderna mRNA-1273 vaccine. The median time to analysis was 38 days (IQR, 27 to 83) for CLL patients and 36 days (IQR, 28 to 57) for healthy controls. Testing plasma samples for SARS-CoV-2 anti-spike and receptor-binding domain Abs by enzyme-linked immunosorbent assay (ELISA), we found that all healthy controls seroconverted to both antigens, while CLL patients had lower response rates (68% and 54%) as well as lower median titers (23-fold and 30-fold; both p < 0.001). Similarly, NAb responses against the then prevalent D614G and Delta SARS-CoV-2 variants were detected in 97% and 93% of controls, respectively, but in only 42% and 38% of CLL patients, who also exhibited >23-fold and >17-fold lower median NAb titers (both p < 0.001). Interestingly, 26% of CLL patients failed to develop NAbs but had high-titer binding Abs that preferentially reacted with the S2 subunit of the SARS-CoV-2 spike. Since these patients were also seropositive for endemic human coronaviruses (HCoVs), these responses likely reflect cross-reactive HCoV Abs rather than vaccine-induced de novo responses. CLL disease status, advanced Rai stage (III-IV), elevated serum beta-2 microglobulin levels (ß2m >2.4 mg/L), prior therapy, anti-CD20 immunotherapy (<12 months), and intravenous immunoglobulin (IVIg) prophylaxis were all predictive of an inability to mount SARS-CoV-2 NAbs (all p ≤ 0.03). T cell response rates determined for a subset of participants were 2.8-fold lower for CLL patients compared to healthy controls (0.05, 95% CI 0.01 to 0.27, p < 0.001), with reduced intracellular IFNγ staining (p = 0.03) and effector polyfunctionality (p < 0.001) observed in CD4+ but not in CD8+ T cells. Surprisingly, in treatment-naïve CLL patients, BNT162b2 vaccination was identified as an independent negative risk factor for NAb generation (5.8, 95% CI 1.6 to 27, p = 0.006). CLL patients who received mRNA-1273 had 12-fold higher (p < 0.001) NAb titers and 1.7-fold higher (6.5, 95% CI 1.3 to 32, p = 0.02) response rates than BNT162b2 vaccinees despite similar disease characteristics. The absence of detectable NAbs in CLL patients was associated with reduced naïve CD4+ T cells (p = 0.03) and increased CD8+ effector memory T cells (p = 0.006). Limitations of the study were that not all participants were subjected to the same immune analyses and that pre-vaccination samples were not available. CONCLUSIONS: CLL pathogenesis is characterized by a progressive loss of adaptive immune functions, including in most treatment-naïve patients, with preexisting memory being preserved longer than the capacity to mount responses to new antigens. In addition, higher NAb titers and response rates identify mRNA-1273 as a superior vaccine for CLL patients.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Humanos , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Estudios Prospectivos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación
5.
Proc Natl Acad Sci U S A ; 116(8): 3229-3238, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718403

RESUMEN

Human and simian immunodeficiency viruses (HIV/SIVs) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4+ T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, and P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained, protecting chimpanzees against infection with SIVcpz and other SIVs to which they are exposed.


Asunto(s)
Antígenos CD4/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/genética , Proteínas del Envoltorio Viral/genética , Animales , Antígenos CD4/inmunología , Linfocitos T CD4-Positivos/inmunología , Evolución Molecular , Variación Genética/inmunología , VIH/genética , VIH/patogenicidad , Humanos , Pan troglodytes/genética , Pan troglodytes/inmunología , Polisacáridos/genética , Polisacáridos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Proteínas del Envoltorio Viral/inmunología
6.
Emerg Infect Dis ; 27(9): 2454-2458, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34193339

RESUMEN

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.


Asunto(s)
COVID-19 , Formación de Anticuerpos , COVID-19/inmunología , Prueba Serológica para COVID-19 , Humanos , Nasofaringe , SARS-CoV-2 , Seroconversión
7.
Proc Natl Acad Sci U S A ; 114(4): E590-E599, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28069935

RESUMEN

Sexual transmission of HIV-1 is an inefficient process, with only one or few variants of the donor quasispecies establishing the new infection. A critical, and as yet unresolved, question is whether the mucosal bottleneck selects for viruses with increased transmission fitness. Here, we characterized 300 limiting dilution-derived virus isolates from the plasma, and in some instances genital secretions, of eight HIV-1 donor and recipient pairs. Although there were no differences in the amount of virion-associated envelope glycoprotein, recipient isolates were on average threefold more infectious (P = 0.0001), replicated to 1.4-fold higher titers (P = 0.004), were released from infected cells 4.2-fold more efficiently (P < 0.00001), and were significantly more resistant to type I IFNs than the corresponding donor isolates. Remarkably, transmitted viruses exhibited 7.8-fold higher IFNα2 (P < 0.00001) and 39-fold higher IFNß (P < 0.00001) half-maximal inhibitory concentrations (IC50) than did donor isolates, and their odds of replicating in CD4+ T cells at the highest IFNα2 and IFNß doses were 35-fold (P < 0.00001) and 250-fold (P < 0.00001) greater, respectively. Interestingly, pretreatment of CD4+ T cells with IFNß, but not IFNα2, selected donor plasma isolates that exhibited a transmitted virus-like phenotype, and such viruses were also detected in the donor genital tract. These data indicate that transmitted viruses are phenotypically distinct, and that increased IFN resistance represents their most distinguishing property. Thus, the mucosal bottleneck selects for viruses that are able to replicate and spread efficiently in the face of a potent innate immune response.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1/fisiología , Interferón Tipo I/inmunología , Femenino , Interacciones Huésped-Patógeno , Humanos , Masculino , Semen/virología , Ducha Vaginal , Virión , Replicación Viral
8.
PLoS Biol ; 14(12): e1002584, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27935939

RESUMEN

The allosteric inhibitors of integrase (termed ALLINIs) interfere with HIV replication by binding to the viral-encoded integrase (IN) protein. Surprisingly, ALLINIs interfere not with DNA integration but with viral particle assembly late during HIV replication. To investigate the ALLINI inhibitory mechanism, we crystallized full-length HIV-1 IN bound to the ALLINI GSK1264 and determined the structure of the complex at 4.4 Å resolution. The structure shows GSK1264 buried between the IN C-terminal domain (CTD) and the catalytic core domain. In the crystal lattice, the interacting domains are contributed by two different dimers so that IN forms an open polymer mediated by inhibitor-bridged contacts; the N-terminal domains do not participate and are structurally disordered. Engineered amino acid substitutions at the inhibitor interface blocked ALLINI-induced multimerization. HIV escape mutants with reduced sensitivity to ALLINIs commonly altered amino acids at or near the inhibitor-bound interface, and these substitutions also diminished IN multimerization. We propose that ALLINIs inhibit particle assembly by stimulating inappropriate polymerization of IN via interactions between the catalytic core domain and the CTD and that understanding the interface involved offers new routes to inhibitor optimization.


Asunto(s)
Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH-1/enzimología , Regulación Alostérica , Inhibidores de Integrasa VIH/química , Estructura Molecular
9.
Bioinformatics ; 31(15): 2461-8, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25819674

RESUMEN

MOTIVATION: The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. RESULTS: We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study.


Asunto(s)
Microbiota , Modelos Estadísticos , Humanos , Análisis Multivariante , Tamaño de la Muestra , Programas Informáticos , Estadísticas no Paramétricas
10.
Proc Natl Acad Sci U S A ; 110(17): 7020-5, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23569255

RESUMEN

Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures.


Asunto(s)
Enfermedades del Simio Antropoideo/epidemiología , Enfermedades del Simio Antropoideo/parasitología , Reservorios de Enfermedades/parasitología , Gorilla gorilla , Malaria/veterinaria , Pan troglodytes , Plasmodium/genética , Animales , Enfermedades del Simio Antropoideo/transmisión , Secuencia de Bases , Teorema de Bayes , Camerún/epidemiología , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Funciones de Verosimilitud , Malaria/epidemiología , Malaria/transmisión , Modelos Genéticos , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Especificidad de la Especie
11.
Retrovirology ; 12: 79, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26377088

RESUMEN

BACKGROUND: HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6. RESULTS: Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5' read-in, splicing out of HIV89.6 from the D4 donor and 3' read-through were the most common HIV89.6-host cell chimeric RNA forms. CONCLUSIONS: Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Intrones , Retroelementos , Linfocitos T/metabolismo , Linfocitos T/virología , Línea Celular , Células Cultivadas , Retrovirus Endógenos/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Activación Transcripcional , Activación Viral
12.
Nucleic Acids Res ; 40(20): 10345-55, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22923523

RESUMEN

Alternative RNA splicing greatly expands the repertoire of proteins encoded by genomes. Next-generation sequencing (NGS) is attractive for studying alternative splicing because of the efficiency and low cost per base, but short reads typical of NGS only report mRNA fragments containing one or few splice junctions. Here, we used single-molecule amplification and long-read sequencing to study the HIV-1 provirus, which is only 9700 bp in length, but encodes nine major proteins via alternative splicing. Our data showed that the clinical isolate HIV-1(89.6) produces at least 109 different spliced RNAs, including a previously unappreciated ∼1 kb class of messages, two of which encode new proteins. HIV-1 message populations differed between cell types, longitudinally during infection, and among T cells from different human donors. These findings open a new window on a little studied aspect of HIV-1 replication, suggest therapeutic opportunities and provide advanced tools for the study of alternative splicing.


Asunto(s)
Empalme Alternativo , Regulación Viral de la Expresión Génica , VIH-1/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Línea Celular , Células Cultivadas , Humanos , Reacción en Cadena de la Polimerasa , Sitios de Empalme de ARN , ARN Mensajero/química , ARN Viral/química , Análisis de Secuencia de ARN , Linfocitos T/virología
13.
AIDS Res Hum Retroviruses ; 40(2): 114-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37125442

RESUMEN

Decades of effort have yielded highly effective antiviral agents to treat HIV, but viral strains have evolved resistance to each inhibitor type, focusing attention on the importance of developing new inhibitor classes. A particularly promising new target is the HIV capsid, the function of which can be disrupted by highly potent inhibitors that persist long term in treated subjects. Studies with such inhibitors have contributed to an evolving picture of the role of capsid itself-the inhibitors, like certain capsid protein (CA) amino acid substitutions, can disrupt intracellular trafficking to alter the selection of target sites for HIV DNA integration in cellular chromosomes. In this study, we compare effects on HIV integration targeting for two potent inhibitors-a new molecule targeting CA, GSK878, and the previously studied lenacapavir (LEN, formerly known as GS-6207). We find that both inhibitors reduce integration in active transcription units and near epigenetic marks associated with active transcription. A careful study of integration near repeated sequences indicated frequencies were also altered for integration within multiple repeat classes. One notable finding was increased integration in centromeric satellite repeats in the presence of LEN and GSK878, which is of interest because proviruses integrated in centromeric repeats have been associated with transcriptional repression, inducibility, and latency. These data add to the picture that CA protein remains associated with preintegration complexes through the point in infection during which target sites for integration are selected, and specify new aspects of the consequences of disrupting this mechanism.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Infecciones por VIH/genética , ADN Viral/genética , Integración Viral
14.
mBio ; 15(4): e0312923, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38477472

RESUMEN

The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses, including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation, and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN-stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper respiratory tract and least favorable in the lower respiratory cell line, and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals. IMPORTANCE: Comparative analysis of infections by SARS-CoV-2 ancestral virus and variants of concern, including Alpha, Beta, Delta, and Omicron, indicated that variants were selected for efficiency in replication. In infections of patient-derived primary nasal cultures grown at air-liquid interface to model upper respiratory infection, Omicron reached the highest titers at early time points, a finding that was confirmed by parallel population sampling studies. While all infections overcame dsRNA-mediated host responses, infections with Omicron induced the strongest interferon and interferon-stimulated gene response. In both primary nasal cultures and lower respiratory cell line, infections by Delta were most damaging to the cells as indicated by syncytia formation, loss of cell barrier integrity, and nasal ciliary function.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Línea Celular , Interferones
15.
Retrovirology ; 10: 90, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23953889

RESUMEN

BACKGROUND: HIV infection can be treated effectively with antiretroviral agents, but the persistence of a latent reservoir of integrated proviruses prevents eradication of HIV from infected individuals. The chromosomal environment of integrated proviruses has been proposed to influence HIV latency, but the determinants of transcriptional repression have not been fully clarified, and it is unclear whether the same molecular mechanisms drive latency in different cell culture models. RESULTS: Here we compare data from five different in vitro models of latency based on primary human T cells or a T cell line. Cells were infected in vitro and separated into fractions containing proviruses that were either expressed or silent/inducible, and integration site populations sequenced from each. We compared the locations of 6,252 expressed proviruses to those of 6,184 silent/inducible proviruses with respect to 140 forms of genomic annotation, many analyzed over chromosomal intervals of multiple lengths. A regularized logistic regression model linking proviral expression status to genomic features revealed no predictors of latency that performed better than chance, though several genomic features were significantly associated with proviral expression in individual models. Proviruses in the same chromosomal region did tend to share the same expressed or silent/inducible status if they were from the same cell culture model, but not if they were from different models. CONCLUSIONS: The silent/inducible phenotype appears to be associated with chromosomal position, but the molecular basis is not fully clarified and may differ among in vitro models of latency.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH/fisiología , Integración Viral , Latencia del Virus , Células Cultivadas , VIH/genética , Humanos , Provirus/genética , Provirus/fisiología
16.
PLoS Pathog ; 7(4): e1002020, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21533216

RESUMEN

HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Desoxirribonucleasas/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Receptores CXCR4/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/trasplante , Proliferación Celular , Desoxirribonucleasas/biosíntesis , Desoxirribonucleasas/genética , Modelos Animales de Enfermedad , Ingeniería Genética , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/terapia , VIH-1/genética , VIH-1/metabolismo , Humanos , Macaca mulatta , Ratones , Receptores CCR5/genética , Receptores CCR5/inmunología , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Trasplante Autólogo , Trasplante Heterólogo , Internalización del Virus
17.
Chin Med J (Engl) ; 136(22): 2647-2657, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37914672

RESUMEN

ABSTRACT: Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.


Asunto(s)
Síndromes de Inmunodeficiencia , Microbiota , Virus , Humanos , Viroma
18.
PLoS One ; 18(10): e0289923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37816004

RESUMEN

BACKGROUND: The gut microbiome is believed to contribute to bloodstream infection (BSI) via translocation of dominant gut bacteria in vulnerable patient populations. However, conclusively linking gut and blood organisms requires stringent approaches to establish strain-level identity. METHODS: We enrolled a convenience cohort of critically ill patients and investigated 86 bloodstream infection episodes that occurred in 57 patients. Shotgun metagenomic sequencing was used to define constituents of their gut microbiomes, and whole genome sequencing and assembly was done on 23 unique bloodstream isolates that were available from 21 patients. Whole genome sequences were downloaded from public databases and used to establish sequence-identity distribution and define thresholds for unrelated genomes of BSI species. Gut microbiome reads were then aligned to whole genome sequences of the cognate bloodstream isolate and unrelated database isolates to assess identity. RESULTS: Gut microbiome constituents matching the bloodstream infection species were present in half of BSI episodes, and represented >30% relative abundance of gut sequences in 10% of episodes. Among the 23 unique bloodstream organisms that were available for whole genome sequencing, 14 were present in gut at the species level. Sequence alignment applying defined thresholds for identity revealed that 6 met criteria for identical strains in blood and gut, but 8 did not. Sequence identity between BSI isolates and gut microbiome reads was more likely when the species was present at higher relative abundance in gut. CONCLUSION: In assessing potential gut source for BSI, stringent sequence-based approaches are essential to determine if organisms responsible for BSI are identical to those in gut: of 14 evaluable patients in which the same species was present in both sites, they were identical in 6/14, but were non-identical in 8/14 and thus inconsistent with gut source. This report demonstrates application of sequencing as a key tool to investigate infection tracking within patients.


Asunto(s)
Bacteriemia , Microbioma Gastrointestinal , Sepsis , Humanos , Adulto , Microbioma Gastrointestinal/genética , Bacteriemia/microbiología , Enfermedad Crítica , Bacterias/genética
19.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662273

RESUMEN

The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid-interface (ALI) were used to model upper-respiratory infection and human lung epithelial cell lines used to model lower-respiratory infection. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell-barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper-respiratory system and least-favorable in the lower-respiratory cell line; and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals.

20.
mBio ; 14(1): e0337022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36629414

RESUMEN

HIV-1 and its SIV precursors share a broadly neutralizing antibody (bNAb) epitope in variable loop 2 (V2) at the envelope glycoprotein (Env) trimer apex. Here, we tested the immunogenicity of germ line-targeting versions of a chimpanzee SIV (SIVcpz) Env in human V2-apex bNAb heavy-chain precursor-expressing knock-in mice and as chimeric simian-chimpanzee immunodeficiency viruses (SCIVs) in rhesus macaques (RMs). Trimer immunization of knock-in mice induced V2-directed NAbs, indicating activation of V2-apex bNAb precursor-expressing mouse B cells. SCIV infection of RMs elicited high-titer viremia, potent autologous tier 2 neutralizing antibodies, and rapid sequence escape in the canonical V2-apex epitope. Six of seven animals also developed low-titer heterologous plasma breadth that mapped to the V2-apex. Antibody cloning from two of these animals identified multiple expanded lineages with long heavy chain third complementarity determining regions that cross-neutralized as many as 7 of 19 primary HIV-1 strains, but with low potency. Negative stain electron microscopy (NSEM) of members of the two most cross-reactive lineages confirmed V2 targeting but identified an angle of approach distinct from prototypical V2-apex bNAbs, with antibody binding either requiring or inducing an occluded-open trimer. Probing with conformation-sensitive, nonneutralizing antibodies revealed that SCIV-expressed, but not wild-type SIVcpz Envs, as well as a subset of primary HIV-1 Envs, preferentially adopted a more open trimeric state. These results reveal the existence of a cryptic V2 epitope that is exposed in occluded-open SIVcpz and HIV-1 Env trimers and elicits cross-neutralizing responses of limited breadth and potency. IMPORTANCE An effective HIV-1 vaccination strategy will need to stimulate rare precursor B cells of multiple bNAb lineages and affinity mature them along desired pathways. Here, we searched for V2-apex germ line-targeting Envs among a large set of diverse primate lentiviruses and identified minimally modified versions of one chimpanzee SIV Env that bound several human V2-apex bNAb precursors and stimulated one of these in a V2-apex bNAb precursor-expressing knock-in mouse. We also generated chimeric simian-chimpanzee immunodeficiency viruses and showed that they elicit low-titer V2-directed heterologous plasma breadth in six of seven infected rhesus macaques. Characterization of this antibody response identified a new class of weakly cross-reactive neutralizing antibodies that target the V2-apex, but only in occluded-open Env trimers. The existence of this cryptic epitope, which in some Env backgrounds is immunodominant, needs to be considered in immunogen design.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Pan troglodytes/metabolismo , Macaca mulatta , Anticuerpos Neutralizantes , Epítopos , Glicoproteínas , Productos del Gen env del Virus de la Inmunodeficiencia Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA