Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 1): 55-64, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37930257

RESUMEN

X-ray photon correlation spectroscopy (XPCS) holds strong promise for observing atomic-scale dynamics in materials, both at equilibrium and during non-equilibrium transitions. Here an in situ XPCS study of the relaxor ferroelectric PbMg1/3Nb2/3O3 (PMN) is reported. A weak applied AC electric field generates strong response in the speckle of the diffuse scattering from the polar nanodomains, which is captured using the two-time correlation function. Correlated motions of the Bragg peak are also observed, which indicate dynamic tilting of the illuminated volume. This tilting quantitatively accounts for the observed two-time speckle correlations. The magnitude of the tilting would not be expected solely from the modest applied field, since PMN is an electrostrictive material with no linear strain response to the field. A model is developed based on non-uniform static charging of the illuminated surface spot by the incident micrometre-scale X-ray beam and the electrostrictive material response to the combination of static and dynamic fields. The model qualitatively explains the direction and magnitude of the observed tilting, and predicts that X-ray-induced piezoresponse could be an important factor in correctly interpreting results from XPCS and nanodiffraction studies of other insulating materials under applied AC field or varying X-ray illumination.

2.
Nano Lett ; 23(1): 1-7, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36541700

RESUMEN

Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.


Asunto(s)
Electrodos , Oxidación-Reducción
3.
Phys Chem Chem Phys ; 25(24): 16389-16403, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293887

RESUMEN

Extractant aggregation in liquid-liquid extraction organic phases impacts extraction energetics and is related to the deleterious efficiency-limiting liquid-liquid phase transition known as third phase formation. Using small angle X-ray scattering, we find that structural heterogeneities across a wide range of compositions in binary mixtures of malonamide extractants and alkane diluents are well described by Ornstein-Zernike scattering. This suggests that structure in these simplified organic phases originates from the critical point associated with the liquid-liquid phase transition. To confirm this, we measure the temperature dependence of the organic phase structure, finding critical exponents consistent with the 3D Ising model. Molecular dynamics simulations were also consistent with this mechanism for extractant aggregation. Due to the absence of water or any other polar solutes required to form reverse-micellar-like nanostructures, these fluctuations are inherent to the binary extractant/diluent mixture. We also show how the molecular structure of the extractant and diluent modulate these critical concentration fluctuations by shifting the critical temperature: critical fluctuations are suppressed by increasing extractant alkyl tail lengths or decreasing diluent alkyl chain lengths. This is consistent with how extractant and diluent molecular structure are known to impact metal and acid loading capacity in many-component LLE organic phases, suggesting phase behavior of practical systems may be effectively studied in simplified organic phases. Overall, the explicit connection between molecular structure, aggregation and phase behavior demonstrated here will enable the design of more efficient separations processes.

4.
Science ; 384(6703): 1447-1452, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935718

RESUMEN

Understanding the microscopic origin of the superior electromechanical response in relaxor ferroelectrics requires knowledge not only of the atomic-scale formation of polar nanodomains (PNDs) but also the rules governing the arrangements and stimulated response of PNDs over longer distances. Using x-ray coherent nanodiffraction, we show the staggered self-assembly of PNDs into unidirectional mesostructures that we refer to as polar laminates in the relaxor ferroelectric 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-0.32PT). We reveal the highly heterogeneous electric-field-driven responses of intra- and interlaminate PNDs and establish their correlation with the local strain and the nature of the PND walls. Our observations highlight the critical role of hierarchical lattice organizations on macroscopic material properties and provide guiding principles for the understanding and design of relaxors and a wide range of quantum and functional materials.

5.
Rev Sci Instrum ; 94(1): 013702, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725602

RESUMEN

To provide optimal depth resolution with a coded-aperture Laue diffraction microscope, an accurate position of the coded-aperture and its scanning geometry need to be known. However, finding the geometry by trial and error is a time-consuming and often challenging process because of the large number of parameters involved. In this paper, we propose an optimization approach to automate the focusing process after data is collected. We demonstrate the robustness and efficiency of the proposed approach with experimental data taken at a synchrotron facility.

6.
Int J Oral Sci ; 15(1): 55, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062012

RESUMEN

Ameloblasts are specialized cells derived from the dental epithelium that produce enamel, a hierarchically structured tissue comprised of highly elongated hydroxylapatite (OHAp) crystallites. The unique function of the epithelial cells synthesizing crystallites and assembling them in a mechanically robust structure is not fully elucidated yet, partly due to limitations with in vitro experimental models. Herein, we demonstrate the ability to generate mineralizing dental epithelial organoids (DEOs) from adult dental epithelial stem cells (aDESCs) isolated from mouse incisor tissues. DEOs expressed ameloblast markers, could be maintained for more than five months (11 passages) in vitro in media containing modulators of Wnt, Egf, Bmp, Fgf and Notch signaling pathways, and were amenable to cryostorage. When transplanted underneath murine kidney capsules, organoids produced OHAp crystallites similar in composition, size, and shape to mineralized dental tissues, including some enamel-like elongated crystals. DEOs are thus a powerful in vitro model to study mineralization process by dental epithelium, which can pave the way to understanding amelogenesis and developing regenerative therapy of enamel.


Asunto(s)
Esmalte Dental , Durapatita , Ratones , Animales , Durapatita/farmacología , Durapatita/análisis , Durapatita/metabolismo , Esmalte Dental/metabolismo , Ameloblastos/metabolismo , Amelogénesis , Células Madre , Organoides
7.
Adv Sci (Weinh) ; 9(25): e2202096, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35748173

RESUMEN

Hydrogen fuel cells and electrolyzers operating below 600 °C, ideally below 400 °C, are essential components in the clean energy transition. Yttrium-doped barium zirconate BaZr0.8 Y0.2 O3-d (BZY) has attracted a lot of attention as a proton-conducting solid oxide for electrochemical devices due to its high chemical stability and proton conductivity in the desired temperature range. Grain interfaces and topological defects modulate bulk proton conductivity and hydration, especially at low temperatures. Therefore, understanding the nanoscale crystal structure dynamics in situ is crucial to achieving high proton transport, material stability, and extending the operating range of proton-conducting solid oxides. Here, Bragg coherent X-ray diffractive imaging is applied to investigate in situ and in 3D nanoscale dynamics in BZY during hydration over 40 h at 200 °C, in the low-temperature range. An unexpected activity of topological defects and subsequent cracking is found on a nanoscale covered by the macroscale stability. The rearrangements in structure correlate with emergent regions of different lattice constants, suggesting heterogeneous hydration. The results highlight the extent and impact of nanoscale processes in proton-conducting solid oxides, informing future development of low-temperature protonic ceramic electrochemical cells.

8.
Sci Adv ; 6(43)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33087351

RESUMEN

Despite intensive studies in the past decades, the local structure of disordered matter remains widely unknown. We show the results of a coherent x-ray scattering study revealing higher-order correlations in dense colloidal hard-sphere systems in the vicinity of their crystallization and glass transition. With increasing volume fraction, we observe a strong increase in correlations at both medium-range and next-neighbor distances in the supercooled state, both invisible to conventional scattering techniques. Next-neighbor correlations are indicative of ordered precursor clusters preceding crystallization. Furthermore, the increase in such correlations is accompanied by a marked slowing down of the dynamics, proving experimentally a direct relation between orientational order and sample dynamics in a soft matter system. In contrast, correlations continuously increase for nonequilibrated, glassy samples, suggesting that orientational order is reached before the sample slows down to reach (quasi-)equilibrium.

9.
IUCrJ ; 5(Pt 6): 801-807, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30443363

RESUMEN

The application of X-ray photon correlation spectroscopy (XPCS) at free-electron laser (FEL) facilities enables, for the first time, the study of dynamics on a (sub-)nanometre scale in an unreached time range between femtoseconds and seconds. For soft-matter materials, radiation damage is a major limitation when going beyond single-shot applications. Here, an XPCS study is presented at a hard X-ray FEL on radiation-sensitive polymeric poly(N-isopropylacrylamide) (PNIPAM) nanoparticles. The dynamics of aqueous suspensions of densely packed silica-PNIPAM core-shell particles and a PNIPAM nanogel below the radiation-damage threshold are determined. The XPCS data indicate non-diffusive behaviour, suggesting ballistic and stress-dominated heterogeneous particle motions. These results demonstrate the feasibility of XPCS experiments on radiation-sensitive soft-matter materials at FEL sources and pave the way for future applications at MHz repetition rates as well as ultrafast modes using split-pulse devices.

10.
Gels ; 3(3)2017 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30920530

RESUMEN

Core-shell microgels were synthesized via a free radical emulsion polymerization of thermoresponsive poly-(N-isopropyl acrylamide), pNipam, on the surface of silica nanoparticles. Pure pNipam microgels have a lower critical solution temperature (LCST) of about 32 °C. The LCST varies slightly with the crosslinker density used to stabilize the gel network. Including a silica core enhances the mechanical robustness. Here we show that by varying the concentration gradient of the crosslinker, the thermoresponsive behaviour of the core-shell microgels can be tuned. Three different temperature scenarios have been detected. First, the usual behaviour with a decrease in microgel size with increasing temperature exhibiting an LCST; second, an increase in microgel size with increasing temperature that resembles an upper critical solution temperature (UCST), and; third, a decrease with a subsequent increase of size reminiscent of the presence of both an LCST, and a UCST. However, since the chemical structure has not been changed, the LCST should only change slightly. Therefore we demonstrate how to tune the particle size independently of the LCST.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA