Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Clin Periodontol ; 50(7): 964-979, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36940707

RESUMEN

AIM: To investigate whether silibinin impacts diabetic periodontitis (DP) via mitochondrial regulation. MATERIALS AND METHODS: In vivo, rats were divided into control, diabetes, DP and DP combined with silibinin groups. Diabetes and periodontitis were induced by streptozocin and silk ligation, respectively. Bone turnover was evaluated by microcomputed tomography, histology and immunohistochemistry. In vitro, human periodontal ligament cells (hPDLCs) were exposed to hydrogen peroxide (H2 O2 ) with or without silibinin. Osteogenic function was analysed by Alizarin Red and alkaline phosphatase staining. Mitochondrial function and biogenesis were investigated by mitochondrial imaging assays and quantitative polymerase chain reaction. Activator and lentivirus-mediated knockdown of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a critical regulator of mitochondria biogenesis, was used to explore the mitochondrial mechanisms. RESULTS: Silibinin attenuated periodontal destruction and mitochondrial dysfunction and enhanced mitochondrial biogenesis and PGC-1α expression in rats with DP. Meanwhile, silibinin promoted cell proliferation, osteogenesis and mitochondrial biogenesis and increased the PGC-1α level in hPDLCs exposed to H2 O2 . Silibinin also protected PGC-1α from proteolysis in hPDLCs. Furthermore, both silibinin and activator of PGC-1α ameliorated cellular injury and mitochondrial abnormalities in hPDLCs, while knockdown of PGC-1α abolished the beneficial effect of silibinin. CONCLUSIONS: Silibinin attenuated DP through the promotion of PGC-1α-dependent mitochondrial biogenesis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Factores de Transcripción , Ratas , Animales , Humanos , Factores de Transcripción/metabolismo , Silibina/farmacología , Silibina/uso terapéutico , Biogénesis de Organelos , Microtomografía por Rayos X , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
2.
Biochem Biophys Res Commun ; 509(2): 483-490, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30595386

RESUMEN

Oxidative stress (OS)-induced apoptosis of periodontal ligament cells (PDLCs) has been suggested to be an important pathogenic factor of periodontitis. Mitochondrial abnormalities are closely linked to OS and act as the main players in apoptosis. Our aim was to investigate the potential mitochondrial abnormalities in PDLCs apoptosis induced by OS. In this study, significant reduction in viability and increased apoptosis were observed in H2O2-treated hPDLCs. H2O2 also induced mitochondrial dysfunction, judging by increased mitochondrial reactive oxygen species amounts, and decreased mitochondrial membrane potential as well as ATP levels. Furthermore, H2O2 significantly enhanced mitochondrial fission by decreasing the expression of Mfn1 and Mfn2, along with increasing the expression of Drp1, Fis1 and the cleavage of OPA1. Notably, NAC stabilized the balance of the mitochondrial dynamics, attenuated mitochondrial dysfunction, and inhibited apoptosis of hPDLCs in the presence of H2O2. In conclusion, the OS-induced apoptosis of hPDLCs may be mediated by mitochondria-dependent pathway.


Asunto(s)
Fibroblastos/patología , Mitocondrias/patología , Estrés Oxidativo , Ligamento Periodontal/patología , Acetilcisteína/farmacología , Adulto , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Depuradores de Radicales Libres/farmacología , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Adulto Joven
3.
J Clin Periodontol ; 46(6): 608-622, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30989678

RESUMEN

AIM: Oxidative stress (OS) biomarkers have been detected in saliva and gingival crevicular fluid (GCF) during chronic periodontitis (CP) progression; however, the relationship between OS biomarkers and CP progression remains elusive. The purpose of this meta-analysis is to investigate the relationship between local OS biomarkers and CP. METHODS: This review was conducted through a systematic search from three databases. Studies on CP participants were included as an experimental group, and studies on periodontally healthy (PH) participants were included as a control. Mean effects were expressed as standardized mean difference with their associated 95% confidence intervals. RESULTS: From a total of 2,972 articles, 32 articles fulfilled the inclusion criteria. We found a significant decrease of total antioxidant capacity and a significant increase of malondialdehyde (MDA), nitric oxide, total oxidant status (TOS), and 8-hydroxy-deoxyguanosine levels in the saliva of CP patients. Moreover, we also found an elevation of MDA level in GCF of CP group when compared with the PH group. There were no significant differences of salivary and GCF superoxide dismutase levels, salivary glutathione peroxidase level, and GCF TOS level between two groups. However, a high heterogeneity was observed among evaluated studies. CONCLUSIONS: Despite the limitations of this study, the result of our meta-analysis supported the rationale that there was a direct link between CP and OS-related biomarkers' levels in the local site, indicating the important role of OS in the onset and development of CP.


Asunto(s)
Periodontitis Crónica , Líquido del Surco Gingival , Biomarcadores , Humanos , Estrés Oxidativo , Pérdida de la Inserción Periodontal , Índice Periodontal , Saliva
4.
Oxid Med Cell Longev ; 2023: 5617800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846719

RESUMEN

Periodontitis is an oral microbiota-induced inflammatory disease, in which inflammation and oxidative stress play a critical role. Silibinin (SB), a Silybum marianum-derived compound, exhibits strong anti-inflammatory and antioxidative properties. We adopted a rat ligature-induced periodontitis model and a lipopolysaccharide- (LPS-) stimulated human periodontal ligament cells (hPDLCs) model to evaluate the protective effects of SB. In the in vivo model, SB reduced alveolar bone loss and apoptosis of PDLCs in the periodontal tissue. SB also maintained the expression of nuclear factor-E2-related factor 2 (Nrf2), a key regulator of cellular resistance to oxidative stress, and attenuated lipid, protein, and DNA oxidative damages in the periodontal lesion area. Meanwhile, in the in vitro model, SB administration reduced the production of intracellular reactive oxidative species (ROS). Furthermore, SB exerted a strong anti-inflammatory property in both in vivo and in vitro models by inhibiting the expression of inflammatory mediators including nuclear factor-κB (NF-κB) as well as nucleotide binding oligomerization domain- (NOD-) like receptor family pyrin domain-containing 3 (NLRP3) and downregulating the levels of proinflammatory cytokines. This study, for the first time, demonstrates that SB exhibits the anti-inflammatory and antioxidative properties against periodontitis by downregulating the expression of NF-κB and NLRP3 and upregulating Nrf2 expression, suggesting a promising potential clinical application of SB in periodontitis.


Asunto(s)
FN-kappa B , Periodontitis , Ratas , Humanos , Animales , Silibina/farmacología , Silibina/uso terapéutico , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Regulación hacia Abajo , Factor 2 Relacionado con NF-E2/metabolismo , Periodontitis/tratamiento farmacológico , Periodontitis/patología , Inflamación/patología , Estrés Oxidativo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Lipopolisacáridos/metabolismo
5.
Free Radic Biol Med ; 172: 19-32, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34052344

RESUMEN

Excessive generation of reactive oxygen species (ROS) have great impacts on the development of periodontitis. Dynamin-related protein 1 (Drp1) mediated mitochondrial fission is the main reason and the result of excessive ROS generation. However, whether Drp1 and crosstalk between ROS and Drp1 contribute to the process of periodontitis remains elusive. We herein investigated the role and functional significance of crosstalk between ROS and Drp1 in periodontitis. Firstly, human periodontal ligament cells (hPDLCs) were treated with hydrogen peroxide (H2O2) and ROS inhibitor N-acetyl-cysteine (NAC) or Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1). Cell viability, apoptosis, osteogenic differentiation, expression of Drp1, and mitochondrial function were investigated. Secondly, mice with periodontitis were treated with NAC or Mdivi-1. Finally, gingival tissues were collected from periodontitis patients and healthy individuals to evaluate ROS and Drp1 levels. H2O2 induced cellular injury and inflammation, excessive ROS production, mitochondrial abnormalities, and increased expression of p-Drp1 and Drp1 in hPDLCs, which could be reversed by NAC and Mdivi-1. Moreover, both NAC and Mdivi-1 ameliorated tissue damage and inflammation, and decreased expression of p-Drp1 and Drp1 in mice with periodontitis. More importantly, patients with periodontitis presented significantly higher levels of ROS-induced oxidative damage and p-Drp1 than that in healthy individuals and correlated with clinical parameters. In summary, ROS-Drp1 crosstalk greatly promotes the development of periodontitis. Pharmacological blockade of this crosstalk might be a novel therapeutic strategy for periodontitis.


Asunto(s)
Peróxido de Hidrógeno , Periodontitis , Animales , Dinaminas/genética , Humanos , Ratones , Dinámicas Mitocondriales , Osteogénesis , Periodontitis/genética , Especies Reactivas de Oxígeno
6.
Oxid Med Cell Longev ; 2018: 9421019, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622677

RESUMEN

Diabetes mellitus is a well-recognized risk factor for periodontitis. The goal of the present study was to elucidate whether oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2) participate in the aggravation of periodontitis by diabetes. For this purpose, we assigned Wistar rats to control, periodontitis, diabetes, and diabetic periodontitis groups. Two weeks after induction of diabetes by streptozotocin, periodontitis was induced by ligation. Two weeks later, periodontal tissues and blood were harvested and analyzed by stereomicroscopy, immunohistochemistry, and real-time polymerase chain reaction. We found that ligation induced more severe bone loss and periodontal cell apoptosis in diabetic rats than in normal rats (p < 0.05). Compared with the control group, periodontitis significantly enhanced local oxidative damage (elevated expression of 3-nitrotyrosine, 4-hydroxy-2-nonenal, and 8-hydroxy-deoxyguanosine), whereas diabetes significantly increased systemic oxidative damage and suppressed antioxidant capacity (increased malondialdehyde expression and decreased superoxide dismutase activity) (p < 0.05). Simultaneous periodontitis and diabetes synergistically aggravated both local and systemic oxidative damage (p < 0.05); this finding was strongly correlated with the more severe periodontal destruction in diabetic periodontitis. Furthermore, gene and protein expression of Nrf2 was significantly downregulated in diabetic periodontitis (p < 0.05). Multiple regression analysis indicated that the reduced Nrf2 expression was strongly correlated with the aggravated periodontal destruction and oxidative damage in diabetic periodontitis. We conclude that enhanced local and systemic oxidative damage and Nrf2 downregulation contribute to the development and progression of diabetic periodontitis.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Periodontitis/metabolismo , Animales , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/patología , Regulación hacia Abajo , Masculino , Periodontitis/genética , Periodontitis/patología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA