Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.810
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Biol ; 20(4): e3001619, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35476671

RESUMEN

Skeletal muscle regeneration is essential for maintaining muscle function in injury and muscular disease. Myogenesis plays key roles in forming new myofibers during the process. Here, through bioinformatic screen for the potential regulators of myogenesis from 5 independent microarray datasets, we identify an overlapping differentially expressed gene (DEG) optineurin (OPTN). Optn knockdown (KD) delays muscle regeneration in mice and impairs C2C12 myoblast differentiation without affecting their proliferation. Conversely, Optn overexpression (OE) promotes myoblast differentiation. Mechanistically, OPTN increases nuclear levels of ß-catenin and enhances the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription activity, suggesting activation of Wnt signaling pathway. The activation is accompanied by decreased protein levels of glycogen synthase kinase 3ß (GSK3ß), a negative regulator of the pathway. We further show that OPTN physically interacts with and targets GSK3ß for autophagic degradation. Pharmacological inhibition of GSK3ß rescues the impaired myogenesis induced by Optn KD during muscle regeneration and myoblast differentiation, corroborating that GSK3ß is the downstream effector of OPTN-mediated myogenesis. Together, our study delineates the novel role of OPTN as a potential regulator of myogenesis and may open innovative therapeutic perspectives for muscle regeneration.


Asunto(s)
Autofagia , Proteínas de Ciclo Celular , Glucógeno Sintasa Quinasa 3 beta , Proteínas de Transporte de Membrana , Desarrollo de Músculos , Vía de Señalización Wnt , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Vía de Señalización Wnt/genética
2.
PLoS Biol ; 20(2): e3001517, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35202387

RESUMEN

Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight through activation of hindbrain receptor glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) in rodents and nonhuman primates, thus endogenous induction of this peptide holds promise for obesity treatment. Here, through in silico drug-screening methods, we found that small molecule Camptothecin (CPT), a previously identified drug with potential antitumor activity, is a GDF15 inducer. Oral CPT administration increases circulating GDF15 levels in diet-induced obese (DIO) mice and genetic ob/ob mice, with elevated Gdf15 expression predominantly in the liver through activation of integrated stress response. In line with GDF15's anorectic effect, CPT suppresses food intake, thereby reducing body weight, blood glucose, and hepatic fat content in obese mice. Conversely, CPT loses these beneficial effects when Gdf15 is inhibited by a neutralizing antibody or AAV8-mediated liver-specific knockdown. Similarly, CPT failed to reduce food intake and body weight in GDF15's specific receptor GFRAL-deficient mice despite high levels of GDF15. Together, these results indicate that CPT is a promising anti-obesity agent through activation of GDF15-GFRAL pathway.


Asunto(s)
Camptotecina/farmacología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor 15 de Diferenciación de Crecimiento/genética , Obesidad/prevención & control , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Camptotecina/farmacocinética , Línea Celular , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Células HEK293 , Células HL-60 , Humanos , Células MCF-7 , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/etiología , Obesidad/genética , Células PC-3
3.
Genomics ; 116(5): 110889, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901654

RESUMEN

Cholangiocarcinoma (CCA) is widely noted for its high degree of malignancy, rapid progression, and limited therapeutic options. This study was carried out on transcriptome data of 417 CCA samples from different anatomical locations. The effects of lipid metabolism related genes and immune related genes as CCA classifiers were compared. Key genes were derived from MVI subtypes and better molecular subtypes. Pathways such as epithelial mesenchymal transition (EMT) and cell cycle were significantly activated in MVI-positive group. CCA patients were classified into three (four) subtypes based on lipid metabolism (immune) related genes, with better prognosis observed in lipid metabolism-C1, immune-C2, and immune-C4. IPTW analysis found that the prognosis of lipid metabolism-C1 was significantly better than that of lipid metabolism-C2 + C3 before and after correction. KRT16 was finally selected as the key gene. And knockdown of KRT16 inhibited proliferation, migration and invasion of CCA cells.

4.
J Am Chem Soc ; 146(2): 1681-1689, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38178655

RESUMEN

The coupled relationship between carrier and phonon scattering severely limits the thermoelectric performance of n-type GeTe materials. Here, we provide an efficient strategy to enlarge grains and induce vacancy clusters for decoupling carrier-phonon scattering through the annealing optimization of n-type GeTe-based materials. Specifically, boundary migration is used to enlarge grains by optimizing the annealing time, while vacancy clusters are induced through the aggregation of Ge vacancies during annealing. Such enlarged grains can weaken carrier scattering, while vacancy clusters can strengthen phonon scattering, leading to decoupled carrier-phonon scattering. As a result, a ratio between carrier mobility and lattice thermal conductivity of ∼492.8 cm3 V-1 s-1 W-1 K and a peak ZT of ∼0.4 at 473 K are achieved in Ge0.67Pb0.13Bi0.2Te. This work reveals the critical roles of enlarged grains and induced vacancy clusters in decoupling carrier-phonon scattering and demonstrates the viability of fabricating high-performance n-type GeTe materials via annealing optimization.

5.
Ann Hum Genet ; 88(2): 126-137, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37846608

RESUMEN

INTRODUCTION: Prostate cancer is one of the most common cancer types in males and rs12621278:A > G has been suggested to be associated with this disease by previous genome-wide association studies. One thousand genomes project data analysis indicated that rs12621278:A > G is within two long-core haplotypes. However, the origin, causal variant(s), and molecular function of these haplotypes were remaining unclear. MATERIALS AND METHODS: Population genetics analysis and functional genomics work was performed for this locus. RESULTS: Phylogeny analysis verified that the rare haplotype is derived from Neanderthal introgression. Genome annotation suggested that three genetic variants in the core haplotypes, rs116108611:G > A, rs139972066:AAAAAAAA > AAAAAAAAA, and rs3835124:ATTTATT > ATT, are located in functional regions. Luciferase assay indicated that rs139972066:AAAAAAAA > AAAAAAAAA and rs116108611:G > A are not able to alter ITGA6 (integrin alpha 6) and ITGA6 antisense RNA 1 expression, respectively. In contrast, rs3835124:ATTTATT > ATT can significantly influence PDK1 (pyruvate dehydrogenase kinase 1) expression, which was verified by expression quantitative trait locus analysis. This genetic variant can alter transcription factor cut like homeobox 1 interaction efficiency. The introgressed haplotype was observed to be subject to positive selection in East Asian populations. The molecular function of the haplotype suggested that Neanderthal should be with lower PDK1 expression and further different energy homeostasis from modern human. CONCLUSION: This study provided new insight into the contribution of Neanderthal introgression to human phenotypes.


Asunto(s)
Hombre de Neandertal , Neoplasias , Humanos , Animales , Hombre de Neandertal/genética , Estudio de Asociación del Genoma Completo , Genética de Población , Filogenia , Haplotipos , Genoma Humano , Neoplasias/genética
6.
Anal Chem ; 96(8): 3679-3685, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353671

RESUMEN

Recently, organic photoelectrochemical transistor (OPECT) bioanalysis has become a prominent technique for the high-performance detection of biomolecules. However, as a sensitive index of the OPECT, the dynamic regulation transconductance (gm) is still severely deficient. Herein, this work reports a new photosensitive metal-organic framework (MOF-on-MOF) heterostructure for the effective modulation of maximum gm and natural bienzyme interfacing toward choline detection. Specifically, the bidentate ligand MOF (b-MOF) was assembled onto the UiO-66 MOF (u-MOF) by a modular assembly method, which could facilitate the charge separation and generate enhanced photocurrents and offer a biophilic environment for the immobilization of choline oxidase (ChOx) and horseradish peroxidase (HRP) through hydrogen-bonded bridges. The transconductance of the OPECT could be flexibly altered by increased light intensity to maximal value at zero gate bias, and sensitive choline detection was achieved with a detection limit of 0.2 µM. This work reveals the potential of MOF-on-MOF heterostructures for futuristic optobioelectronics.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Peroxidasa de Rábano Silvestre/química , Colina , Técnicas Biosensibles/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38750271

RESUMEN

PURPOSE: HER2-positive breast cancer (BC) accounts for 20-30% of all BC subtypes and is linked to poor prognosis. Trastuzumab (Tz), a humanized anti-HER2 monoclonal antibody, is a first-line treatment for HER2-positive breast cancer which faces resistance challenges. This study aimed to identify the biomarkers driving trastuzumab resistance. METHODS: Differential expression analysis of genes and proteins between trastuzumab-sensitive (TS) and trastuzumab-resistant (TR) cells was conducted using RNA-seq and iTRAQ. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used to study their functions. The prognostic significance and protein levels of ARFIP2 and MSN were evaluated using online tools and immunohistochemistry. Sensitivity of MSN and ARFIP2 to other therapies was assessed using public pharmacogenomics databases and the R language. RESULTS: Five genes were up-regulated, and nine genes were down-regulated in TR cells at both transcriptional and protein levels. Low ARFIP2 and high MSN expression linked to poor BC prognosis. MSN increased and ARFIP2 decreased in TR patients, correlating with shorter OS. MSN negatively impacted fulvestrant and immunotherapy sensitivity, while ARFIP2 had a positive impact. CONCLUSION: Our findings suggest that MSN and ARFIP2 could serve as promising biomarkers for predicting response to Tz, offering valuable insights for future research in the identification of diagnostic and therapeutic targets for BC patients with Tz resistance.

8.
Int J Obes (Lond) ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926462

RESUMEN

BACKGROUND: The obesity paradox has been reported among older adults. However, whether the favorable effect of obesity is dependent on metabolic status remains largely unknown. We aimed to explore the association of metabolic obesity phenotypes and their changes with all-cause mortality among the Chinese oldest-old population. METHODS: This prospective cohort study included 1207 Chinese oldest old (mean age: 91.8 years). Metabolic obesity phenotypes were determined by central obesity and metabolic status, and participants were classified into metabolically healthy obesity (MHO), metabolically unhealthy obesity (MUO), metabolically healthy non-obesity (MHN), and metabolically unhealthy non-obesity (MUN). The hazard ratios (HRs) and 95% confidence intervals (95% CIs) were estimated by Cox regression models. RESULTS: During 5.3 years of follow-up, 640 deaths were documented. Compared with non-obesity, obesity was associated with a decreased mortality risk among participants with metabolically healthy (HR, 0.75; 95% CI, 0.63-0.91) while this association was insignificant among metabolically unhealthy. Compared to MHO, MHN (HR, 1.27; 95% CI, 1.06-1.53) and MUN (HR, 1.49; 95% CI, 1.10-2.02) were significantly associated with an increased mortality risk. Compared to those with stable MHO, those transited from MHO to MUO demonstrated a higher mortality risk (HR, 1.81; 95% CI, 1.06-3.11). CONCLUSIONS: MHO predicts better survival among the Chinese oldest-old population. These findings suggest that ensuring optimal management of metabolic health is beneficial and taking caution in weight loss based on the individual body weight for the metabolically healthy oldest-old adults.

9.
Physiol Plant ; 176(1): e14211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38351399

RESUMEN

Alpine Rhododendron species are prominent constituents and renowned ornamental plants in alpine ecosystems. Consequently, evaluating the genetic variation in embolism resistance within the genus Rhododendron and predicting their adaptability to future climate change is important. Nevertheless, the assessment of embolism resistance in Rhododendron species remains limited. This investigation aimed to examine leaf vulnerability to embolism across ten alpine Rhododendron species, which are frequently employed as ornamental species in Rhododendron forests in Southwest China. The study analyzed the correlation between embolism resistance and various morphological traits, while also conducting water control experiments to evaluate the relationship between embolism resistance and drought resistance. The outcomes indicated pronounced variations in leaf vulnerability to embolism among species, as reflected by the water potential at 50% of embolized pixels (P50 ). Furthermore, the leaf P50 exhibited a significant positive correlation with vessel diameter (D) (R2 = 0.44, P = 0.03) and vessel wall span (b) (R2 = 0.64, P = 0.005), while displaying a significant negative correlation with vessel reinforcement ((t/b)2 ) (R2 = 0.67, P = 0.004). These findings underscore the reliability of selecting species based on embolism vulnerability to preserve the diversity of alpine ecosystems and foster resilience to climate change.


Asunto(s)
Embolia , Rhododendron , Ecosistema , Reproducibilidad de los Resultados , Hojas de la Planta , Agua , China
10.
Mol Ther ; 31(10): 2975-2990, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37644723

RESUMEN

Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.


Asunto(s)
Estudio de Asociación del Genoma Completo , Nanopartículas , Animales , Ratones , Distribución Tisular , Corteza Prefrontal , ARN , ARN Mensajero , ARN Interferente Pequeño
11.
Clin Lab ; 70(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747908

RESUMEN

BACKGROUND: miR-34a has been implicated in many autoimmune diseases and gastrointestinal diseases. However, the expression of miR-34 in ulcerative colitis (UC) patients were not fully studied. This study was performed to in-vestigate the association of blood and intestinal tissue miR-34a expression of patients with disease severity in UC patients. METHODS: Our study enrolled 82 patients with UC and 80 age- and gender- matched healthy individuals. Blood miR-34a expressions were detected using reverse transcription-polymerase chain reaction (RT-PCR). Local intestinal miR-34a, STAT3 mRNA and IL-23 mRNA expressions were also detected in the lesioned area and adjacent non-affected intestinal tissue in patients. Disease severity of UC was assessed by Mayo score. The diagnostic value of both blood and local miR-34a expression for UC patients was assessed by receiver operating characteristic (ROC) curve. RESULTS: Blood miR-34a was increased in UC patients in contrast with healthy individuals with statistical significance. In UC patients, local intestinal miR-34a expressions were markedly upregulated compared to adjacent non-affected intestinal tissue. Local intestinal miR-34a expressions were positively correlated with STAT3 mRNA and IL-23 mNRA. Both blood and local miR-34a expressions were significantly and positively related to Mayo scores. ROC curve analysis indicated that both blood and local miR-34a expressions may act as decent marker for Mayo grade. CONCLUSIONS: Blood and intestinal tissue miR-34a expressions are correlated with disease severity in UC patients. Both blood and intestinal tissue miR-34a expressions may serve as potential diagnostic and prognostic makers for UC. Therapeutic methods targeting miR-34a may act as potential ways for UC treatment.


Asunto(s)
Colitis Ulcerosa , Mucosa Intestinal , MicroARNs , Factor de Transcripción STAT3 , Índice de Severidad de la Enfermedad , Humanos , MicroARNs/sangre , MicroARNs/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/sangre , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/metabolismo , Femenino , Masculino , Mucosa Intestinal/metabolismo , Adulto , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Persona de Mediana Edad , Estudios de Casos y Controles , Curva ROC , Biomarcadores/sangre , Interleucina-23/sangre , Interleucina-23/genética , ARN Mensajero/genética , ARN Mensajero/sangre , ARN Mensajero/metabolismo
12.
BMC Pregnancy Childbirth ; 24(1): 351, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720272

RESUMEN

BACKGROUND: Plasma microRNAs act as biomarkers for predicting and diagnosing diseases. Reliable non-invasive biomarkers for biochemical pregnancy loss have not been established. We aim to analyze the dynamic microRNA profiles during the peri-implantation period and investigate if plasma microRNAs could be non-invasive biomarkers predicting BPL. METHODS: In this study, we collected plasma samples from patients undergoing embryo transfer (ET) on ET day (ET0), 11 days after ET (ET11), and 14 days after ET (ET14). Patients were divided into the NP (negative pregnancy), BPL (biochemical pregnancy loss), and CP (clinical pregnancy) groups according to serum hCG levels at day11~14 and ultrasound at day28~35 following ET. MicroRNA profiles at different time-points were detected by miRNA-sequencing. We analyzed plasma microRNA signatures for BPL at the peri-implantation stage, we characterized the dynamic microRNA changes during the implantation period, constructed a microRNA co-expression network, and established predictive models for BPL. Finally, the sequencing results were confirmed by Taqman RT-qPCR. RESULTS: BPL patients have distinct plasma microRNA profiles compared to CP patients at multiple time-points during the peri-implantation period. Machine learning models revealed that plasma microRNAs could predict BPL. RT-qPCR confirmed that miR-181a-2-3p, miR-9-5p, miR-150-3p, miR-150-5p, and miR-98-5p, miR-363-3p were significantly differentially expressed between patients with different reproductive outcomes. CONCLUSION: Our study highlights the non-invasive value of plasma microRNAs in predicting BPL.


Asunto(s)
Aborto Espontáneo , Biomarcadores , Transferencia de Embrión , MicroARNs , Humanos , Femenino , Embarazo , MicroARNs/sangre , Adulto , Biomarcadores/sangre , Aborto Espontáneo/sangre , Implantación del Embrión , Aprendizaje Automático
13.
Biomed Chromatogr ; : e5943, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890009

RESUMEN

In this study, a targeted nanocarrier was developed by functionalizing graphene oxide with polyethyleneimine and folic acid, intended for loading oridonin. The nanocarrier was successfully synthesized and characterized using an ultraviolet spectrum, Fourier transform infrared spectroscopy and scanning electron microscopy. The nanocarrier demonstrated a remarkable oridonin loading capacity, reaching 424.8 µg/mg, as determined by ultra-high performance liquid chromatography. In vitro drug release experiments exhibited a pH-dependent release profile, with a higher cumulative release in an acidic environment. The release mechanism followed the Ritger-Peppas equation model. Cytotoxicity assays indicated minimal toxicity of the nanocarrier. Enhanced cellular uptake by MCF7 cells was observed for carriers functionalized with folate and polyethyleneimine. These findings highlight the potential of functionalized graphene oxide as a promising carrier for oridonin delivery in biomedical applications.

14.
Mikrochim Acta ; 191(6): 326, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740583

RESUMEN

Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.


Asunto(s)
Movimiento Celular , Quimioterapia Combinada , Nanopartículas , Neoplasias , Dióxido de Silicio , Movimiento Celular/efectos de los fármacos , Dióxido de Silicio/química , Quimioterapia Combinada/métodos , Neoplasias/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Nanopartículas/ultraestructura , Células A549 , Microscopía Electrónica de Transmisión , Humanos
15.
BMC Med Educ ; 24(1): 404, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605290

RESUMEN

OBJECTIVE: The present study aims to explore the influencing factors of the scientific fitness literacy of nurses and provide a strategic basis for literacy improvement. METHODS: A questionnaire on the influencing factors of scientific fitness literacy of nurses was designed by the group conducting the present study; the questionnaire was based on the socioecology model and the questionnaire preparation method. The general data questionnaire and the questionnaire on the influencing factors of scientific fitness literacy of nurses were adopted to investigate nurses in tertiary hospitals in order to analyze and discuss the influencing factors of their scientific fitness literacy. RESULTS: (1) The questionnaire on the influencing factors of the scientific fitness literacy of nurses comprised five dimensions and 36 items. The overall item-content validity index was 0.833-1.000, the scale-content validity index was 0.974, and the overall Cronbach's α coefficient was 0.955; (2) the results of the pairwise Pearson correlation analysis showed that all five dimensions were positively correlated with the scientific fitness literacy of nurses; and (3) the results of the multiple linear regression analysis revealed that five dimensions, as well as the existence of exercise habits in daily life, had a significant impact on the scientific fitness literacy of nurses (P < 0.001). CONCLUSION: The factors influencing the scientific fitness literacy of nurses involved all levels of the socioecological system. The methods of improving the awareness of the scientific fitness of nurses and providing opportunities for scientific fitness activities via the hospital played a critical role in literacy improvement. However, the lack of professional guidance and an atmosphere promoting scientific fitness might hinder literacy improvement.


Asunto(s)
Alfabetización en Salud , Humanos , Reproducibilidad de los Resultados , Alfabetización en Salud/métodos , Centros de Atención Terciaria , Encuestas y Cuestionarios
16.
Nano Lett ; 23(2): 533-540, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36595350

RESUMEN

In this study, simple-structured wavelength sensors were developed by depositing two back-to-back Au/MAPbI3/Au photodetectors on an MAPbI3 single crystal. This sensor could quantitatively distinguish wavelengths. Further device analysis showed that both photodetectors possess entirely disparate optoelectronic properties. Consequently, the as-developed wavelength sensor could accurately distinguish incident-light wavelengths ranging from 265 to 860 nm with a resolution of less than 1.5 nm based on the relation between the photocurrent ratios of both photodetectors and the incident light wavelengths. Notably, a high resolution and wide detection range are among the optimum reported values for such sensors and enable full-color imaging. Furthermore, technology computer-aided design (TCAD) simulations showed that a mechanism involved in distinguishing wavelengths is attributed to the wavelength-dependent photon generation rate in MAPbI3 single crystals. The high-performance MAPbI3 wavelength sensor can potentially drive the research progress of perovskites in wavelength recognition and full-color imaging.

17.
Alzheimers Dement ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946708

RESUMEN

INTRODUCTION: The study aimed to investigate the associations of changes in social isolation, loneliness, or both, with cognitive function. METHODS: Data were from 7299 older adults in the Chinese Longitudinal Healthy Longevity Survey. We defined four change patterns (no, incident, transient, and persistent) for social isolation and loneliness, and created nine-category variable to represent the joint changes. Tobit regression models and Cox models were performed. RESULTS: Incident, transient, and persistent social isolation or loneliness may accelerate cognitive decline (p < 0.05). Incident, transient, and persistent social isolation were associated with higher cognitive impairment risk, while only persistent loneliness was associated with higher cognitive impairment risk (p < 0.001). Notably, short-term or persistent social isolation was associated with accelerated cognitive decline and incident cognitive impairment, regardless of different loneliness change status (p < 0.05). DISCUSSION: Short-term or persistent social isolation and persistent loneliness may be a salient risk factor for cognitive decline and cognitive impairment. HIGHLIGHTS: Incident, transient, and persistent social isolation were associated with accelerated cognitive decline and higher cognitive impairment risk. Persistent loneliness was associated with accelerated cognitive decline and higher cognitive impairment risk. Short-term or persistent social isolation with concurrent different loneliness change status accelerated cognitive decline and higher cognitive impairment risk.

18.
J Am Chem Soc ; 145(14): 7810-7819, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37002870

RESUMEN

Chiral mesoporous silica (mSiO2) nanomaterials have gained significant attention during the past two decades. Most of them show a topologically characteristic helix; however, little attention has been paid to the molecular-scale chirality of mSiO2 frameworks. Herein, we report a chiral amide-gel-directed synthesis strategy for the fabrication of chiral mSiO2 nanospheres with molecular-scale-like chirality in the silicate skeletons. The functionalization of micelles with the chiral amide gels via electrostatic interactions realizes the growth of molecular configuration chiral silica sols. Subsequent modular self-assembly results in the formation of dendritic large mesoporous silica nanospheres with molecular chirality of the silica frameworks. As a result, the resultant chiral mSiO2 nanospheres show abundant large mesopores (∼10.1 nm), high pore volumes (∼1.8 cm3·g-1), high surface areas (∼525 m2·g-1), and evident CD activity. The successful transfer of the chirality from the chiral amide gels to composited micelles and further to asymmetric silica polymeric frameworks based on modular self-assembly leads to the presence of molecular chirality in the final products. The chiral mSiO2 frameworks display a good chiral stability after a high-temperature calcination (even up to 1000 °C). The chiral mSiO2 can impart a notable decline in ß-amyloid protein (Aß42) aggregation formation up to 79%, leading to significant mitigation of Aß42-induced cytotoxicity on the human neuroblastoma line SH-ST5Y cells in vitro. This finding opens a new avenue to construct the molecular chirality configuration in nanomaterials for optical and biomedical applications.


Asunto(s)
Enfermedad de Alzheimer , Nanosferas , Humanos , Nanosferas/química , Péptidos beta-Amiloides , Dióxido de Silicio/química , Micelas , Geles , Amidas
19.
Funct Integr Genomics ; 23(1): 72, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862319

RESUMEN

ENY2 (Enhancer of yellow 2 transcription factor) is a transcription nuclear protein and primarily participates in the course of mRNA export and histone deubiquitination to influence gene expression. Current studies have shown that the expression of ENY2 is significantly upregulated in multiple cancers. However, the exact association between ENY2 and pan-cancers has not been fully established. Here, we comprehensively analyzed ENY2 from the online public database and The Cancer Genome Atlas (TCGA) database, including gene expression level in pan-cancer, comparison of ENY2 expression in different molecular and immune subtypes of pan-cancer, targeted protein, biological functions, molecular signatures, diagnostic and prognostic value in pan-cancer. Moreover, we focused on head and neck squamous cell carcinoma (HNSC) and explored ENY2 from the perspective of the correlations with clinical characteristics, prognosis, co-expression genes, differentially expressed genes (DEGs) and immune Infiltration. Our findings showed that the expression of ENY2 differed enormously not only in most cancer types but also in different molecular and immune subtypes of cancers. High accuracy in predicting cancers and notable correlations with prognosis of certain cancers suggested that ENY2 might be a potential diagnostic and prognostic biomarker of cancers. In addition, ENY2 was identified to be significantly correlated with clinical stage, gender, histologic grade and lymphovascular invasion in HNSC. Overexpression of ENY2 could lead to a worse overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in HNSC, especially in different clinical subgroups of HNSC. Taken together, ENY2 showed strong correlation with the diagnosis and prognosis of pan-cancer, and was an independent prognostic risk factor of HNSC, which may serve as a potential target for cancer management.


Asunto(s)
Neoplasias de Cabeza y Cuello , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Biomarcadores , Neoplasias de Cabeza y Cuello/genética , Proteínas Nucleares , Procesamiento Proteico-Postraduccional , Carcinoma de Células Escamosas de Cabeza y Cuello
20.
Biochem Biophys Res Commun ; 689: 149217, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37972446

RESUMEN

The incidence and mortality rates of colorectal cancer (CRC) have significantly increased in recent years. It has been shown that early diagnosis of CRC improves the five-year survival of patients compared to late diagnosis, as patients with stage I disease have a five-year survival rate as high as 90 %. Through bioinformatics analysis, we identified Kallikrein 10 (KLK10), a member of the Kallikrein family, as a reliable predictor of CRC progression, particularly in patients with early-stage CRC. Furthermore, single-cell analysis revealed that KLK10 was highly expressed in tumor and partial immune cells. Analysis of the biological functions of KLK10 using the Kyoto encyclopedia of genes and genomes and gene ontology indicated that KLK10 plays a role in the proliferation and differentiation of cancer cells, along with the maintenance of tumor function and immune regulation, explicitly by T cells and macrophages. EdU cell proliferation staining, plate clone formation assay, and cell scratch assay demonstrated that KLK10 inhibition by siRNA affected the proliferation and migration of CRC cells. Cell cycle detection by flow cytometry demonstrated that KLK10 inhibition led to cell cycle arrest in the G1 phase. In addition, the proportion of M1 and M2 macrophages in 45 tumor specimens was analyzed by immunohistochemistry, the proportion of CD4+ T cells and CD8+ T cells in plasma was identified by flow cytometry, and their correlation with KLK10 was analyzed. The effects of KLK10 on T cells and macrophages were verified in independent cell experiments. The results revealed that KLK10 also activates CD4+ T cells, mediating M2-type macrophage polarization.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Humanos , Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/patología , Calicreínas/genética , Calicreínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA