RESUMEN
Seeking highly efficient non-preference electrocatalytic materials that serve photoelectrochemical (PEC) water splitting in acidic systems is expectant in the context of environmentally friendly production. We designed Ni2P electrocatalysts synthesized in oil phases via the hot-bubbling method with superb stability in air and sulfuric acid solution for PEC, which were found with excellent hydrogen evolution performance. A tunable particle size and highly exposed (001) planes of Ni2P nanocrystals were achieved. The designed catalysts achieved a notable promotion in the hydrogen evolution reaction activity compared to that of Ni2P synthesized in the water phase. More specifically, the electrode prepared by self-assembled Ni2P nanoparticles was found to have decent over-potential of η10 = 164 mV in darkness and was further decreased to 129 mV with irradiation of visible light. The cyclic stability tests manifested brilliant durability in 0.5 M H2SO4. Measurement of the transient photocurrent response and PEC water splitting catalytic performance indicated that the Ni2P had high carrier concentration upon irradiation, lower carrier recombination probability, and prolonged photo-response lifetime (3.03-3.14 s).
RESUMEN
Tumor targeting has been a great challenge for drug delivery systems. A number of nanotechnology-derived drug carriers have been developed for cancer treatment to improve efficacy and biocompatibility. Among them, the emergence of cell-nanocarriers has attracted great attention, which simulates cell function and has good biocompatibility. They can also escape the clearance of reticuloendothelial system, showing a long-cycle effect. The inherent tumor migration and tumor homing ability of cells increase their significance as tumor-targeting vectors. In this review, we focus on the combination of stem cells, immune cells, red blood cells, and cell membranes to nanocarriers, which enable chemotherapy agents to efficiently target lesion sites and improve drug distribution while being low toxic and safe. In addition, we discuss the pros and cons of these nanoparticles as well as the challenges and opportunities that lie ahead. Although research to address these limitations is still ongoing, this promising tumor-targeted drug delivery system will provide a safe and effective platform against cancer.