Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792119

RESUMEN

To investigate the bioactivities of fresh garlic and its processed product, black garlic, we conducted comparative analyses of antioxidant, anti-inflammatory, innate immune activation, and anti-cancer activities in addition to the chemical composition (sugar, amino acid, and polyphenol contents) of these materials. Simultaneous assay using neutrophil-like cells showed that fresh garlic exhibited antioxidant and innate immunostimulatory activities, whereas black garlic displayed a potent anti-inflammatory effect. The antioxidant activity index was correlated with phenol and flavonoid contents, while the innate immunostimulatory activity was correlated with fructan content. Furthermore, some black garlics with low fructose content were found to inhibit the proliferation of UM-UC-3 cancer cells, while other black garlics rich in fructose increased UM-UC-3 cell proliferation. It was shown that the processing of fresh garlic could change the composition of sugars, antioxidants, and amino acids, which have different effects on neutrophil-like cells and UM-UC-3 cells, as well as on bioactivities.


Asunto(s)
Antioxidantes , Proliferación Celular , Ajo , Ajo/química , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Línea Celular Tumoral , Aminoácidos/análisis , Aminoácidos/química , Polifenoles/análisis , Polifenoles/química , Polifenoles/farmacología , Fenoles/análisis , Fenoles/química , Fenoles/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología
2.
BMC Genomics ; 22(1): 481, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174821

RESUMEN

BACKGROUND: Genomic information for Allium cepa L. is limited as it is heterozygous and its genome is very large. To elucidate potential SNP markers obtained by NGS, we used a complete set of A. fistulosum L.-A. cepa monosomic addition lines (MALs) and doubled haploids (DHs). These were the parental lines of an A. cepa mapping population for transcriptome-based SNP genotyping. RESULTS: We mapped the transcriptome sequence reads from a series of A. fistulosum-A. cepa MALs onto the unigene sequence of the doubled haploid shallot A. cepa Aggregatum group (DHA) and compared the MAL genotype call for parental bunching onion and shallot transcriptome mapping data. We identified SNP sites with at least four reads on 25,462 unigenes. They were anchored on eight A. cepa chromosomes. A single SNP site was identified on 3,278 unigenes and multiple SNPs were identified on 22,184 unigenes. The chromosome marker information was made public via the web database Allium TDB ( http://alliumtdb.kazusa.or.jp/ ). To apply transcriptome based genotyping approach for genetic mapping, we gathered RNA sequence data from 96 lines of a DHA × doubled haploid bulb onion A. cepa common onion group (DHC) mapping population. After selecting co-dominant SNP sites, 16,872 SNPs were identified in 5,339 unigenes. Of these, at least two SNPs with identical genotypes were found in 1,435 unigenes. We developed a linkage map using genotype information from these unigenes. All unigene markers mapped onto the eight chromosomes and graphical genotyping was conducted based on the unigene order information. Another 2,963 unigenes were allocated onto the eight chromosomes. To confirm the accuracy of this transcriptome-based genetic linkage map, conventional PCR-based markers were used for linkage analysis. All SNP - and PCR-based markers were mapped onto the expected linkage groups and no inconsistency was found among these chromosomal locations. CONCLUSIONS: Effective transcriptome analysis with unique Allium resources successfully associated numerous chromosome markers with unigene information and a high-density A. cepa linkage map. The information on these unigene markers is valuable in genome sequencing and useful trait detection in Allium.


Asunto(s)
Allium , Cebollas , Allium/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Cebollas/genética , Polimorfismo de Nucleótido Simple , Transcriptoma
3.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070753

RESUMEN

In situ imaging of molecular markers on a physical chromosome is an indispensable tool for refining genetic maps and validation genome assembly at the chromosomal level. Despite the tremendous progress in genome sequencing, the plant genome assembly at the chromosome level remains a challenge. Recently developed optical and Hi-C mapping are aimed at assistance in genome assembly. For high confidence in the genome assembly at chromosome level, more independent approaches are required. The present study is aimed at refining an ultrasensitive Tyr-FISH technique and developing a reliable and simple method of in situ mapping of a short unique DNA sequences on plant chromosomes. We have carefully analyzed the critical steps of the Tyr-FISH to find out the reasons behind the flaws of this technique. The accurate visualization of markers/genes appeared to be significantly dependent on the means of chromosome slide preparation, probe design and labeling, and high stringency washing. Appropriate adjustment of these steps allowed us to detect a short DNA sequence of 1.6 Kb with a frequency of 51.6%. Based on our results, we developed a more reliable and simple protocol for dual-color Tyr-FISH visualization of unique short DNA sequences on plant chromosomes. This new protocol can allow for more accurate determination of the physical distance between markers and can be applied for faster integration of genetic and cytogenetic maps.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/química , Genoma de Planta , Hibridación Fluorescente in Situ , Cebollas/genética , Coloración y Etiquetado/métodos , Cromosomas de las Plantas/metabolismo , Sondas de ADN/síntesis química , Sondas de ADN/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , Ligamiento Genético , Marcadores Genéticos , Cebollas/metabolismo , Transcriptoma
4.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807861

RESUMEN

Garlic (Allium sativum) is the second most important Allium crop that has been used as a vegetable and condiment from ancient times due to its characteristic flavor and taste. Although garlic is a sterile plant that reproduces vegetatively through cloves, garlic shows high biodiversity, as well as phenotypic plasticity and environmental adaptation capacity. To determine the possible mechanism underlying this phenomenon and to provide new genetic materials for the development of a novel garlic cultivar with useful agronomic traits, the metabolic profiles in the leaf tissue of 30 garlic accessions collected from different geographical regions, with a special focus on the Asian region, were investigated using LC/MS. In addition, the total saponin and fructan contents in the roots and cloves of the investigated garlic accessions were also evaluated. Total saponin and fructan contents did not separate the garlic accessions based on their geographical origin, implying that saponin and fructan contents were clone-specific and agroclimatic changes have affected the quantitative and qualitative levels of saponins in garlic over a long history of cultivation. Principal component analysis (PCA) and dendrogram clustering of the LC/MS-based metabolite profiling showed two major clusters. Specifically, many Japanese and Central Asia accessions were grouped in cluster I and showed high accumulations of flavonol glucosides, alliin, and methiin. On the other hand, garlic accessions grouped in cluster II exhibited a high accumulation of anthocyanin glucosides and amino acids. Although most of the accessions were not separated based on country of origin, the Central Asia accessions were clustered in one group, implying that these accessions exhibited distinct metabolic profiles. The present study provides useful information that can be used for germplasm selection and the development of new garlic varieties with beneficial biotic and abiotic stress-adaptive traits.


Asunto(s)
Fructanos/análisis , Ajo/genética , Ajo/metabolismo , Metabolómica/métodos , Saponinas/análisis , Aminoácidos/análisis , Cromatografía Liquida , Análisis por Conglomerados , Ajo/fisiología , Espectrometría de Masas , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología
5.
Molecules ; 25(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202886

RESUMEN

Shallot landraces and varieties are considered an important genetic resource for Allium breeding due to their high contents of several functional metabolites. Aiming to provide new genetic materials for the development of a novel bulb onion cultivar derived from intraspecific hybrids with useful agronomic traits from shallots, the metabolic profiles in the bulbs of 8 Indonesian shallot landraces and 7 short-day and 3 long-day bulb onion cultivars were established using LC-Q-TOF-MS/MS. Principal component analysis, partial least squares discriminant analysis, and dendrogram clustering analysis showed two major groups; group I contained all shallot landraces and group II contained all bulb onion cultivars, indicating that shallots exhibited a distinct metabolic profile in comparison with bulb onions. Variable importance in the projection and Spearman's rank correlation indicated that free and conjugated amino acids, flavonoids (especially metabolites having flavonol aglycone), and anthocyanins, as well as organic acids, were among the top metabolite variables that were highly associated with shallot landraces. The absolute quantification of 21 amino acids using conventional HPLC analysis showed high contents in shallots rather than in bulb onions. The present study indicated that shallots reprogrammed their metabolism toward a high accumulation of amino acids and flavonoids as an adaptive mechanism in extremely hot tropical environments.


Asunto(s)
Flavonoides/análisis , Metaboloma , Cebollas/química , Raíces de Plantas/química , Chalotes/química , Antocianinas/análisis , Cromosomas de las Plantas , Análisis por Conglomerados , Análisis Discriminante , Flavonoles/análisis , Haploidia , Metabolómica , Cebollas/genética , Fitomejoramiento , Análisis de Componente Principal , Chalotes/genética , Especificidad de la Especie , Espectrometría de Masas en Tándem
6.
Genome ; 58(4): 135-42, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26218854

RESUMEN

Bunching onion (Allium fistulosum L.; 2n = 16), bulb onion (Allium cepa L. Common onion group), and shallot (Allium cepa L. Aggregatum group) cultivars were inoculated with rust fungus, Puccinia allii, isolated from bunching onion. Bulb onions and shallots are highly resistant to rust, suggesting they would serve as useful resources for breeding rust resistant bunching onions. To identify the A. cepa chromosome(s) related to rust resistance, a complete set of eight A. fistulosum - shallot monosomic alien addition lines (MAALs) were inoculated with P. allii. At the seedling stage, FF+1A showed a high level of resistance in controlled-environment experiments, suggesting that the genes related to rust resistance could be located on shallot chromosome 1A. While MAAL, multi-chromosome addition line, and hypoallotriploid adult plants did not exhibit strong resistance to rust. In contrast to the high resistance of shallot, the addition line FF+1A+5A showed reproducibly high levels of rust resistance.


Asunto(s)
Basidiomycota/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Cebollas/genética , Enfermedades de las Plantas/inmunología , Chalotes/genética , Basidiomycota/inmunología , Cruzamiento , Cebollas/inmunología , Cebollas/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Plantones/genética , Plantones/inmunología , Plantones/microbiología , Chalotes/inmunología , Chalotes/microbiología
7.
Phytopathology ; 105(4): 525-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25412011

RESUMEN

Fusarium oxysporum f. sp. cepae causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of F. oxysporum f. sp. cepae is very limited. In this study, F. oxysporum f. sp. cepae was isolated from onion and Welsh onion grown in 12 locations in Japan, and a total of 55 F. oxysporum f. sp. cepae isolates (27 from onion and 28 from Welsh onion) were characterized based on their rDNA intergenic spacer (IGS) and translation elongation factor-1α (EF-1α) nucleotide sequences, vegetative compatibility groups (VCGs), and the presence of the SIX (secreted in xylem) homologs. Phylogenetic analysis of IGS sequences showed that these isolates were grouped into eight clades (A to H), and 20 onion isolates belonging to clade H were monophyletic and assigned to the same VCG. All the IGS-clade H isolates possessed homologs of SIX3, SIX5, and SIX7. The SIX3 homolog was located on a 4 Mb-sized chromosome in the IGS-clade H isolates. Pathogenicity tests using onion seedlings showed that all the isolates with high virulence were in the IGS-clade H. These results suggest that F. oxysporum f. sp. cepae isolates belonging to the IGS-clade H are genetically and pathogenically different from those belonging to the other IGS clades.


Asunto(s)
Fusarium/genética , Cebollas/microbiología , Enfermedades de las Plantas/microbiología , Secuencia de Bases , Mapeo Cromosómico , Cartilla de ADN/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Fusarium/aislamiento & purificación , Fusarium/patogenicidad , Marcadores Genéticos/genética , Japón , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/genética , Filogenia , Raíces de Plantas/microbiología , Plantones/genética , Análisis de Secuencia de ADN , Virulencia/genética
8.
Biosci Biotechnol Biochem ; 78(7): 1112-22, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25229844

RESUMEN

To investigate the involvement of Allium roylei metabolites in the plant's defenses, a comprehensive analysis of the content of cysteine sulfoxides, flavonols, polyphenols, ascorbic acid, and saponins was carried out in the various organs of this species. Metabolomics high performance liquid chromatography (HPLC), spectral-based analysis, and histochemcial studies have given important insight to the validity of saponins as a key component involved in plant protection. The root-basal stem, bulb, and leaf extracts exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with inhibition concentration (IC(50)) ranging from 0.649 to 0.757 mg/mL. The antimicrobial properties of the saponin and flavonoid crude extracts were evaluated. The saponin extracts demonstrated significant antifungal activity depending on the applied concentration, and the growth inhibition rate of the tested fungal pathogens ranged from 1.07 to 47.76%. No appreciable antibacterial activity was recorded in the same sample.


Asunto(s)
Allium/metabolismo , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Ácido Ascórbico/metabolismo , Transporte Biológico , Flavonoides/metabolismo , Flavonoides/farmacología , Depuradores de Radicales Libres/metabolismo , Depuradores de Radicales Libres/farmacología , Especificidad de Órganos , Polifenoles/metabolismo , Saponinas/metabolismo , Saponinas/farmacología , Sulfóxidos/metabolismo
9.
Pathogens ; 13(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057818

RESUMEN

Here, 12 Fusarium strains, previously described as F. oxysporum f. sp. cepae (Foc), were examined via multi-locus sequencing of calmodulin (cmdA), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1), to verify the taxonomic position of Foc in the newly established epitype of F. oxysporum. The strains in this study were divided into two clades: F. nirenbergiae and Fusarium sp. To further determine the host specifications of the strains, inoculation tests were performed on onion bulbs and Welsh onion seedlings as potential hosts. Four strains (AC145, AP117, Ru-13, and TA) isolated from diseased onions commonly possessed the secreted in xylem (SIX)-3, 5, 7, 9, 10, 12, and 14 genes and were pathogenic and highly aggressive to onion bulbs, whereas all strains except for one strain (AF97) caused significant inhibition of Welsh onion growth. The inoculation test also revealed that the strains harboring the SIX9 gene were highly aggressive to both onion and Welsh onion and the gene was expressed during infection of both onions and Welsh onions, suggesting the important role of the SIX9 gene in pathogenicity. This study provides insights into the evolutionary pathogenicity differentiation of Fusarium strains causing Fusarium basal rot and wilt diseases in Allium species.

10.
Genes (Basel) ; 15(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38927690

RESUMEN

Climate change has resulted in an increased demand for Japanese bunching onions (Allium fistulosum L., genomes FF) with drought resistance. A complete set of alien monosomic addition lines of A. fistulosum with extra chromosomes from shallot (A. cepa L. Aggregatum group, AA), represented as FF + 1A-FF + 8A, displays a variety of phenotypes that significantly differ from those of the recipient species. In this study, we investigated the impact of drought stress on abscisic acid (ABA) and its precursor, ß-carotene, utilizing this complete set. In addition, we analyzed the expression levels of genes related to ABA biosynthesis, catabolism, and drought stress signal transduction in FF + 1A and FF + 6A, which show characteristic variations in ABA accumulation. A number of unigenes related to ABA were selected through a database using Allium TDB. Under drought conditions, FF + 1A exhibited significantly higher ABA and ß-carotene content compared with FF. Additionally, the expression levels of all ABA-related genes in FF + 1A were higher than those in FF. These results indicate that the addition of chromosome 1A from shallot caused the high expression of ABA biosynthesis genes, leading to increased levels of ABA accumulation. Therefore, it is expected that the introduction of alien genes from the shallot will upwardly modify ABA content, which is directly related to stomatal closure, leading to drought stress tolerance in FF.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Cebollas/genética , Cebollas/metabolismo , Monosomía/genética , beta Caroteno/metabolismo , Allium/genética , Allium/metabolismo
11.
Biosci Biotechnol Biochem ; 77(12): 2486-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24317054

RESUMEN

We measured the antioxidant contents and antioxidative activities in eight Allium fistulosum-shallot monosomic addition lines (MAL; FF+1A-FF+8A). The high antioxidative activity lines (FF+2A and FF+6A) showed high polyphenol accumulation. These additional chromosomes (2A and 6A) would therefore have anonymous genes related to the upregulation of polyphenol production, the antioxidative activities consequently being increased in these MALs.


Asunto(s)
Allium/metabolismo , Depuradores de Radicales Libres/metabolismo , Allium/genética , Compuestos de Bifenilo/metabolismo , Cromosomas de las Plantas/genética , Picratos/metabolismo
12.
Microorganisms ; 11(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38138005

RESUMEN

Fusarium oxysporum f. sp. cepae (Foc) causes basal rot disease in Allium species, including onions (Allium cepa L.) and shallots (A. cepa L. Aggregatum group). Among Allium species, shallots can be crossbred with onions and are relatively more resistant to Foc than onions. Thus, shallots are considered a potential disease-resistant resource for onions. However, the mechanisms underlying the molecular interactions between shallots and Foc remain unclear. This study demonstrated that SIX5, an effector derived from Foc (FocSIX5), acts as an avirulence effector in shallots. We achieved this by generating a FocSIX5 gene knockout mutant in Foc, for which experiments which revealed that it caused more severe wilt symptoms in Foc-resistant shallots than the wild-type Foc and FocSIX5 gene complementation mutants. Moreover, we demonstrated that a single amino acid substitution (R67K) in FocSIX5 was insufficient to overcome shallot resistance to Foc.

13.
BMC Genomics ; 13: 168, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22559261

RESUMEN

BACKGROUND: Vegetables of the genus Allium are widely consumed but remain poorly understood genetically. Genetic mapping has been conducted in intraspecific crosses of onion (Allium cepa L.), A. fistulosum and interspecific crosses between A. roylei and these two species, but it has not been possible to access genetic maps and underlying data from these studies easily. DESCRIPTION: An online comparative genomics database, AlliumMap, has been developed based on the GMOD CMap tool at http://alliumgenetics.org. It has been populated with curated data linking genetic maps with underlying markers and sequence data from multiple studies. It includes data from multiple onion mapping populations as well as the most closely related species A. roylei and A. fistulosum. Further onion EST-derived markers were evaluated in the A. cepa x A. roylei interspecific population, enabling merging of the AFLP-based maps. In addition, data concerning markers assigned in multiple studies to the Allium physical map using A. cepa-A. fistulosum alien monosomic addition lines have been compiled. The compiled data reveal extensive synteny between onion and A. fistulosum. CONCLUSIONS: The database provides the first online resource providing genetic map and marker data from multiple Allium species and populations. The additional markers placed on the interspecific Allium map confirm the value of A. roylei as a valuable bridge between the genetics of onion and A. fistulosum and as a means to conduct efficient mapping of expressed sequence markers in Allium. The data presented suggest that comparative approaches will be valuable for genetic and genomic studies of onion and A. fistulosum. This online resource will provide a valuable means to integrate genetic and sequence-based explorations of Allium genomes.


Asunto(s)
Agricultura , Allium/crecimiento & desarrollo , Allium/genética , Bases de Datos Genéticas , Genómica , Verduras/crecimiento & desarrollo , Verduras/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Cartilla de ADN/metabolismo , Sitios Genéticos/genética , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
14.
Theor Appl Genet ; 124(7): 1241-57, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22234606

RESUMEN

To produce alien monosomic addition lines (AMALs) of Allium cepa (genomes CC, 2n = 2x = 16) carrying extrachromosomes from Allium roylei (RR, 2n = 2x = 16), reciprocal backcrossing of allotriploids (2n = 24, CCR) with diploids (2n = 16, CC) and selfing of a single allotriploid were carried out. The chromosome numbers in the BC(2)F(1) and BC(1)F(2) progenies ranged from 16 to 32. Forty-eight plants were recorded to possess 2n = 17 among a total of 169 plants in observation. Through the analyses of isozymes, expressed sequence tag (EST) markers, and karyotypes, all eight possible types of A. cepa-A. roylei monosomic addition lines (CC+1R-CC+8R) could be identified. Seven types of representative AMALs (without CC+2R) were used for the GISH analysis of somatic chromosomes. Except for CC+6R, all AMALs showed an entire (unrecombined) extrachromosome from A. roylei in the integral diploid background of A. cepa. A single recombination between A. cepa and A. roylei was observed on the extrachromosome in the remaining type. All alloplasmic AMALs possessing A. roylei cytoplasm showed high or complete pollen sterility. Only the autoplasmic CC+4R with A. cepa cytoplasm possessed relatively high pollen fertility. The bulbs of CC+4R displayed the distinct ovoid shape that discriminates them from spherical or oval ones in other AMALs. Downy mildew screening in the field showed higher resistance in A. roylei, a hypo-allotriploid (CCR-nR, 2n = 23), and an allotriploid (CCR, 2n = 24). Meanwhile, no complete resistance was found in some AMALs examined. This was the first trial toward the establishment of a complete set of A. cepa-A. roylei monosomic additions.


Asunto(s)
Allium/genética , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Genes de Plantas , Hibridación Genética , Monosomía , Cruzamiento , Especies en Peligro de Extinción , Cariotipificación
15.
Genome ; 55(11): 797-807, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23199574

RESUMEN

This study was carried out to evaluate the antifungal effect of Allium cepa Aggregatum group (shallot) metabolites on Fusarium oxysporum and to determine the shallot chromosome(s) related to Fusarium wilt resistance using a complete set of eight Allium fistulosum - shallot monosomic addition lines. The antifungal effects of hexane, butanol, and water extraction fractions from bulbs of shallot on 35 isolates of F. oxysporum were examined using the disc diffusion method. Only hexane and butanol fractions showed high antifungal activity. Shallot showed no symptom of disease after inoculation with F. oxysporum f. sp. cepae. The phenolic content of the roots and the saponin content of root exudates of inoculated shallot increased to much higher levels than those of the control at 3 days after inoculation. Application of freeze-dried shallot root exudates to seeds of A. fistulosum soaked in a spore suspension of F. oxysporum resulted in protection of seedlings against infection. Among eight monosomic addition lines and A. fistulosum, FF+2A showed the highest resistance to Fusarium wilt. This monosomic addition line also showed a specific saponin band derived from shallot on the thin layer chromatography profile of saponins in the eight monosomic addition lines. The chromosome 2A of shallot might possess some of the genes related to Fusarium wilt resistance.


Asunto(s)
Allium/química , Allium/genética , Cromosomas de las Plantas/genética , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Extractos Vegetales/farmacología , Allium/inmunología , Allium/microbiología , Cromatografía en Capa Delgada , Pruebas Antimicrobianas de Difusión por Disco , Fusarium/patogenicidad , Micelio , Fenoles/análisis , Fenoles/aislamiento & purificación , Fenoles/farmacología , Enfermedades de las Plantas/microbiología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Exudados de Plantas/química , Exudados de Plantas/aislamiento & purificación , Exudados de Plantas/farmacología , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Saponinas/análisis , Saponinas/aislamiento & purificación , Saponinas/farmacología , Plantones/química , Plantones/genética , Plantones/inmunología , Plantones/microbiología , Semillas/química , Semillas/genética , Semillas/inmunología , Semillas/microbiología , Esporas Fúngicas
16.
DNA Res ; 29(5)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36007888

RESUMEN

Onions are one of the most widely cultivated vegetables worldwide; however, the development and utilization of molecular markers have been limited because of the large genome of this plant. We present a genome-wide marker design workflow for onions and its application in a high-throughput genotyping method based on target amplicon sequencing. The efficiency of the method was evaluated by genotyping of F2 populations. In the marker design workflow, unigene and genomic sequence data sets were constructed, and polymorphisms between parental lines were detected through transcriptome sequence analysis. The positions of polymorphisms detected in the unigenes were mapped onto the genome sequence, and primer sets were designed. In total, 480 markers covering the whole genome were selected. By genotyping an F2 population, 329 polymorphic sites were obtained from the estimated positions or the flanking sequences. However, missing or sparse marker regions were observed in the resulting genetic linkage map. We modified the markers to cover these regions by genotyping the other F2 populations. The grouping and order of markers on the linkages were similar across the genetic maps. Our marker design workflow and target amplicon sequencing are useful for genome-wide genotyping of onions owing to their reliability, cost effectiveness, and flexibility.


Asunto(s)
Genoma de Planta , Cebollas , Mapeo Cromosómico/métodos , Ligamiento Genético , Genotipo , Técnicas de Genotipaje/métodos , Cebollas/genética , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia , Flujo de Trabajo
17.
Metabolites ; 12(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36557300

RESUMEN

In this study, targeted metabolome analysis was applied to identify the discriminative metabolites between Indonesian shallot landraces, Japanese long-day onion (LDO) varieties, and Japanese short-day onion (SDO) varieties. In total, 172 metabolite signal intensities were subjected to multivariate PLS-DA, VIP, and random forest modeling to gain further insight into genotype-specific metabolites. PLS-DA divides the examined genotypes into three different clusters, implying that shallot landraces exhibited a distinct metabolite profile compared with Japanese LDO and SDO varieties. The PLS-DA, VIP, and random forest results indicated that the shallot and LDO are richer in metabolite constituents in comparison with the SDO. Specifically, amino acids and organosulfur compounds were the key characteristic metabolites in shallot and LDO genotypes. The analysis of S-alk(en)yl-L-cysteine sulfoxide (ACSO) compounds showed higher accumulation in the shallot landraces relative to LDO and SDO varieties, which explains the stronger pungency and odor in shallots. In addition, the LDO showed higher ACSO content compared with the SDO, implying that long-day cultivation might enhance sulfur assimilation in the Japanese onion. The LDO 'Super Kitamomiji' and the shallots 'Probolinggo' and 'Thailand' showed higher ACSO content than other varieties, making it useful for Allium breeding to improve the flavor and stress tolerance of onions.

18.
Theor Appl Genet ; 122(3): 501-10, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20938763

RESUMEN

To determine the chromosomal location of bunching onion (Allium fistulosum L.) simple sequence repeats (SSRs) and bulb onion (A. cepa L.) expressed sequence tags (ESTs), we used a complete set of bunching onion-shallot monosomic addition lines and allotriploid bunching onion single alien deletion lines as testers. Of a total of 2,159 markers (1,198 bunching onion SSRs, 324 bulb onion EST-SSRs and 637 bulb onion EST-derived non-SSRs), chromosomal locations were identified for 406 markers in A. fistulosum and/or A. cepa. Most of the bunching onion SSRs with identified chromosomal locations showed polymorphism in bunching onion (89.5%) as well as bulb onion lines (66.1%). Using these markers, we constructed a bunching onion linkage map (1,261 cM), which consisted of 16 linkage groups with 228 markers, 106 of which were newly located. All linkage groups of this map were assigned to the eight basal Allium chromosomes. In this study, we assigned 513 markers to the eight chromosomes of A. fistulosum and A. cepa. Together with 254 markers previously located on a separate bunching onion map, we have identified chromosomal locations for 766 markers in total. These chromosome-specific markers will be useful for the intensive mapping of desirable genes or QTLs for agricultural traits, and to obtain DNA markers linked to these.


Asunto(s)
Cromosomas de las Plantas/genética , Monosomía/genética , Cebollas/genética , Eliminación de Secuencia/genética , Chalotes/genética , Triploidía , Mapeo Cromosómico , ADN de Plantas/genética , Ligamiento Genético , Marcadores Genéticos/genética , Mutación INDEL/genética , Repeticiones de Minisatélite/genética , Polimorfismo de Nucleótido Simple/genética
19.
G3 (Bethesda) ; 11(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34544132

RESUMEN

Onion is an important vegetable crop with an estimated genome size of 16 Gb. We describe the de novo assembly and ab initio annotation of the genome of a doubled haploid onion line DHCU066619, which resulted in a final assembly of 14.9 Gb with an N50 of 464 Kb. Of this, 2.4 Gb was ordered into eight pseudomolecules using four genetic linkage maps. The remainder of the genome is available in 89.6 K scaffolds. Only 72.4% of the genome could be identified as repetitive sequences and consist, to a large extent, of (retro) transposons. In addition, an estimated 20% of the putative (retro) transposons had accumulated a large number of mutations, hampering their identification, but facilitating their assembly. These elements are probably already quite old. The ab initio gene prediction indicated 540,925 putative gene models, which is far more than expected, possibly due to the presence of pseudogenes. Of these models, 47,066 showed RNASeq support. No gene rich regions were found, genes are uniformly distributed over the genome. Analysis of synteny with Allium sativum (garlic) showed collinearity but also major rearrangements between both species. This assembly is the first high-quality genome sequence available for the study of onion and will be a valuable resource for further research.


Asunto(s)
Cebollas , Secuencias Repetitivas de Ácidos Nucleicos , Tamaño del Genoma , Cebollas/genética
20.
Genes Genet Syst ; 84(1): 43-55, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19420800

RESUMEN

To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs.


Asunto(s)
Cromosomas de las Plantas/genética , Genes de Plantas/fisiología , Cebollas/genética , Chalotes/genética , Quimera/genética , Quimera/metabolismo , Cromosomas de las Plantas/metabolismo , Fructanos/biosíntesis , Fructanos/genética , Cebollas/metabolismo , Chalotes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA