Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant J ; 111(2): 595-607, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35510416

RESUMEN

Arabidopsis possesses approximately 2000 transcription factors (TFs) in its genome. They play pivotal roles in various biological processes but analysis of their function has been hampered by the overlapping nature of their activities. To uncover clues to their function, we generated inducible TF lines using glucocorticoid receptor (GR) fusion techniques in Arabidopsis. These TF-GR lines each express one of 1255 TFs as a fusion with the GR gene. An average 14 lines of T2 transgenic TF-GR lines were generated for each TF to monitor their function. To evaluate these transcription lines, we induced the TF-GR lines of phytochrome-interacting factor 4, which controls photomorphogenesis, with synthetic glucocorticoid dexamethasone. These phytochrome-interacting factor 4-GR lines showed the phenotype described in a previous report. We performed screening of the other TF-GR lines for TFs involved in light signaling under blue and far-red light conditions and identified 13 novel TF candidates. Among these, we found two lines showing higher anthocyanin accumulation under light conditions and we examined the regulating genes. These results indicate that the TF-GR lines can be used to dissect functionally redundant genes in plants and demonstrate that the TF-GR line collection can be used as an effective tool for functional analysis of TFs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fitocromo/genética , Plantas Modificadas Genéticamente/metabolismo , Receptores de Glucocorticoides/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Plant Res ; 134(6): 1335-1349, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34477986

RESUMEN

Although anthocyanins are widely distributed in higher plants, betalains have replaced anthocyanins in most species of the order Caryophyllales. The accumulation of flavonols in Caryophyllales plants implies that the late step of anthocyanin biosynthesis from dihydroflavonols to anthocyanins may be blocked in Caryophyllales. The isolation and characterization of functional dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) from Caryophyllales plants has indicated a lack of anthocyanins due to suppression of DFR and ANS. In this study, we demonstrated that overexpression of DFR and ANS from Spinacia oleracea (SoDFR and SoANS, respectively) with PhAN9, which encodes glutathione S-transferase (required for anthocyanin sequestration) from Petunia induces ectopic anthocyanin accumulation in yellow tepals of the cactus Astrophytum myriostigma. A promoter assay of SoANS showed that the Arabidopsis MYB transcription factor PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) activated the SoANS promoter in Arabidopsis leaves. The overexpression of Arabidopsis transcription factors with PhAN9 also induced ectopic anthocyanin accumulation in yellow cactus tepals. PAP homologs from betalain-producing Caryophyllales did not activate the promoter of ANS. In-depth characterization of Caryophyllales PAPs and site-directed mutagenesis in the R2R3-MYB domains identified the amino acid residues affecting transactivation of Caryophyllales PAPs. The substitution of amino acid residues recovered the transactivation ability of Caryophyllales PAPs. Therefore, loss of function in MYB transcription factors may suppress expression of genes involved in the late stage of anthocyanin synthesis, resulting in a lack of anthocyanin in betalain-producing Caryophyllales plants.


Asunto(s)
Arabidopsis , Caryophyllales , Antocianinas , Arabidopsis/genética , Arabidopsis/metabolismo , Betalaínas/metabolismo , Caryophyllales/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
3.
Plant Cell ; 27(2): 375-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25663622

RESUMEN

Brassinosteroids (BRs) play important roles in plant development and the response to environmental cues. BIL1/BZR1 is a master transcription factor in BR signaling, but the mechanisms that lead to the finely tuned targeting of BIL1/BZR1 by BRs are unknown. Here, we identified BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) as a negative regulator of BR signaling in a chemical-biological analysis involving brassinazole (Brz), a specific BR biosynthesis inhibitor. The bss1-1D mutant, which overexpresses BSS1, exhibited a Brz-hypersensitive phenotype in hypocotyl elongation. BSS1 encodes a BTB-POZ domain protein with ankyrin repeats, known as BLADE ON PETIOLE1 (BOP1), which is an important regulator of leaf morphogenesis. The bss1-1D mutant exhibited an increased accumulation of phosphorylated BIL1/BZR1 and a negative regulation of BR-responsive genes. The number of fluorescent BSS1/BOP1-GFP puncta increased in response to Brz treatment, and the puncta were diffused by BR treatment in the root and hypocotyl. We show that BSS1/BOP1 directly interacts with BIL1/BZR1 or BES1. The large protein complex formed between BSS1/BOP1 and BIL1/BZR1 was only detected in the cytosol. The nuclear BIL1/BZR1 increased in the BSS1/BOP1-deficient background and decreased in the BSS1/BOP1-overexpressing background. Our study suggests that the BSS1/BOP1 protein complex inhibits the transport of BIL1/BZR1 to the nucleus from the cytosol and negatively regulates BR signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Complejos Multiproteicos/metabolismo , Desarrollo de la Planta , Transducción de Señal , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brasinoesteroides/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Triazoles/farmacología
4.
Plant Cell Physiol ; 58(1): 95-105, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011868

RESUMEN

Plants have a remarkable ability to perceive and respond to various wavelengths of light and initiate regulation of different cascades of light signaling and molecular components. While the perception of red light and the mechanisms of its signaling involving phytochromes are largely known, knowledge of the mechanisms of blue light signaling is still limited. Chemical genetics involves the use of diverse small active or synthetic molecules to evaluate biological processes. By combining chemicals and analyzing the effects they have on plant morphology, we identified a chemical, 3-bromo-7-nitroindazole (3B7N), that promotes hypocotyl elongation of wild-type Arabidopsis only under continuous blue light. Further evaluation with loss-of-function mutants confirmed that 3B7N inhibits photomorphogenesis through cryptochrome-mediated light signaling. Microarray analysis demonstrated that the effect of 3B7N treatment on gene expression in cry1cry2 is considerably smaller than that in the wild type, indicating that 3B7N specifically interrupts cryptochrome function in the control of seedling development in a light-dependent manner. We demonstrated that 3B7N directly binds to CRY1 protein using an in vitro binding assay. These results suggest that 3B7N is a novel chemical that directly inhibits plant cryptochrome function by physical binding. The application of 3B7N can be used on other plants to study further the blue light mechanism and the genetic control of cryptochromes in the growth and development of plant species.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Criptocromos/genética , Indazoles/farmacología , Luz , Plantones/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Criptocromos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/genética , Hipocótilo/metabolismo , Immunoblotting , Indazoles/química , Indazoles/metabolismo , Fototransducción/efectos de los fármacos , Fototransducción/genética , Fototransducción/efectos de la radiación , Estructura Molecular , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Morfogénesis/efectos de la radiación , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/crecimiento & desarrollo , Plantones/metabolismo
6.
Plant Cell Physiol ; 56(1): e6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25505007

RESUMEN

In transcriptome analysis, accurate annotation of each transcriptional unit and its expression profile is essential. A full-length cDNA (FL-cDNA) collection facilitates the refinement of transcriptional annotation, and accurate transcription start sites help to unravel transcriptional regulation. We constructed a normalized FL-cDNA library from eight growth stages of aerial tissues in Sorghum bicolor and isolated 37,607 clones. These clones were Sanger sequenced from the 5' and/or 3' ends and in total 38,981 high-quality expressed sequence tags (ESTs) were obtained. About one-third of the transcripts of known genes were captured as FL-cDNA clone resources. In addition to these, we also annotated 272 novel genes, 323 antisense transcripts and 1,672 candidate isoforms. These clones are available from the RIKEN Bioresource Center. After obtaining accurate annotation of transcriptional units, we performed expression profile analysis. We carried out spikelet-, seed- and stem-specific RNA sequencing (RNA-Seq) analysis and confirmed the expression of 70.6% of the newly identified genes. We also downloaded 23 sorghum RNA-Seq samples that are publicly available and these are shown on a genome browser together with our original FL-cDNA and RNA-Seq data. Using our original and publicly available data, we made an expression profile of each gene and identified the top 20 genes with the most similar expression. In addition, we visualized their relationships in gene co-expression networks. Users can access and compare various transcriptome data from S, bicolor at http://sorghum.riken.jp.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Sorghum/genética , Transcriptoma , Secuencia de Bases , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Flores/genética , Expresión Génica , Perfilación de la Expresión Génica , Biblioteca de Genes , Especificidad de Órganos , Tallos de la Planta/genética , ARN Mensajero/genética , ARN de Planta/genética , Semillas/genética , Análisis de Secuencia de ARN
7.
Planta ; 237(6): 1509-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23494613

RESUMEN

Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Mitocondrias/metabolismo , Desarrollo de la Planta , Transducción de Señal , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ambiente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Luz , Mitocondrias/efectos de los fármacos , Mitocondrias/efectos de la radiación , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Especificidad de Órganos/efectos de la radiación , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Desarrollo de la Planta/efectos de la radiación , Interferencia de ARN/efectos de los fármacos , Interferencia de ARN/efectos de la radiación , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Tolerancia a la Sal/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación
8.
Planta ; 236(1): 79-89, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22258749

RESUMEN

We previously isolated a soybean (Glycine max (L.) Merr.) flavonoid 3'-hydroxylase (F3'H) gene (sf3'h1) corresponding to the T locus, which controls pubescence and seed coat color, from two near-isogenic lines (NILs), To7B (TT) and To7G (tt). The T allele is also associated with chilling tolerance. Here, Western-blot analysis shows that the sf3'h1 protein was predominantly detected in the hilum and funiculus of the immature seed coat in To7B, whereas sf3'h1 was not detected in To7G. A truncated sf3'h1 protein isolated from To7G was detected only upon enrichment by immunoprecipitation. An analysis using diphenylboric acid 2-aminoethyl ester (DBPA) staining revealed that flavonoids accumulated in the hilum and the funiculus in both To7B and To7G. Further, the scavenging activity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in methanol extracts from the funiculus and hilum of To7B was higher than that of To7G. Moreover, the enzymatic activity of F3'H was detected using microsomal fractions from yeast transformed with sf3'h1 from To7B, but not from To7G. These results indicate that sf3'h1 is involved in flavonoid biosynthesis in the seed coat and affects the antioxidant properties of those tissues. As shown by immunofluorescence microscopy, the sf3'h1 protein was detected primarily around the vacuole in the parenchymatic cells of the hilum in To7B. Further immunoelectron microscopy detected sf3'h1 protein on the membranous structure of the vacuole. Based on these observations, we conclude that F3'H, which is a cytochrome P450 monooxygenase and has been found to be localized to the ER in other plant systems, is localized in the tonoplast in soybean.


Asunto(s)
Glycine max/metabolismo , Oxigenasas de Función Mixta/aislamiento & purificación , Oxigenasas de Función Mixta/metabolismo , Semillas/metabolismo , Semillas/ultraestructura , Proteínas de Soja/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura , Antioxidantes/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoides/biosíntesis , Glycine max/química
9.
Plant J ; 61(3): 409-22, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19919572

RESUMEN

Brassinazole (Brz) is a specific inhibitor of the biosynthesis of brassinosteroids (BRs), which regulate plant organ and chloroplast development. We identified a recessive pale green Arabidopsis mutant, bpg2-1 (Brz-insensitive-pale green 2-1) that showed reduced sensitivity to chlorophyll accumulation promoted by Brz in the light. BPG2 encodes a chloroplast-localized protein with a zinc finger motif and four GTP-binding domains that are necessary for normal chloroplast biogenesis. BPG2-homologous genes are evolutionally conserved in plants, green algae and bacteria. Expression of BPG2 is induced by light and Brz. Chloroplasts of the bpg2-1 mutant have a decreased number of stacked grana thylakoids. In bpg2-1 and bpg2-2 mutants, there was no reduction in expression of rbcL and psbA, but there was abnormal accumulation of precursors of chloroplast 16S and 23S rRNA. Chloroplast protein accumulation induced by Brz was suppressed by the bpg2 mutation. These results indicate that BPG2 plays an important role in post-transcriptional and translational regulation in the chloroplast, and is a component of BR signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al GTP/metabolismo , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/metabolismo , Esteroides/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/ultraestructura , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Filogenia , ARN del Cloroplasto/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética
10.
Nat Commun ; 12(1): 3593, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135337

RESUMEN

Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.


Asunto(s)
Chlorophyta/metabolismo , Océanos y Mares , Fotorreceptores de Plantas/metabolismo , Fitoplancton/metabolismo , Adaptación Fisiológica/genética , Núcleo Celular/metabolismo , Chlorophyta/clasificación , Chlorophyta/genética , Criptocromos/genética , Criptocromos/metabolismo , Evolución Molecular , Luz , Metagenoma , Fotorreceptores de Plantas/genética , Filogenia , Fitocromo/genética , Fitocromo/metabolismo , Fitoplancton/clasificación , Fitoplancton/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética/efectos de la radiación
11.
Plants (Basel) ; 9(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466493

RESUMEN

Natural rubber is the main component of latex obtained from laticifer cells of Hevea brasiliensis. For improving rubber yield, it is essential to understand the genetic molecular mechanisms responsible for laticifer differentiation and rubber biosynthesis. Jasmonate enhances both secondary laticifer differentiation and rubber biosynthesis. Here, we carried out time-course RNA-seq analysis in suspension-cultured cells treated with methyljasmonic acid (MeJA) to characterize the gene expression profile. Gene Ontology (GO) analysis showed that the term "cell differentiation" was enriched in upregulated genes at 24 hours after treatment, but inversely, the term was enriched in downregulated genes at 5 days, indicating that MeJA could induce cell differentiation at an early stage of the response. Jasmonate signaling is activated by MYC2, a basic helix-loop-helix (bHLH)-type transcription factor (TF). The aim of this work was to find any links between transcriptomic changes after MeJA application and regulation by TFs. Using an in vitro binding assay, we traced candidate genes throughout the whole genome that were targeted by four bHLH TFs: Hb_MYC2-1, Hb_MYC2-2, Hb_bHLH1, and Hb_bHLH2. The latter two are highly expressed in laticifer cells. Their physical binding sites were found in the promoter regions of a variety of other TF genes, which are differentially expressed upon MeJA exposure, and rubber biogenesis-related genes including SRPP1 and REF3. These studies suggest the possibilities that Hb_MYC2-1 and Hb_MYC2-2 regulate cell differentiation and that Hb_bHLH1 and Hb_bHLH2 promote rubber biosynthesis. We expect that our findings will help to increase natural rubber yield through genetic control in the future.

12.
Plant Biotechnol (Tokyo) ; 36(1): 43-48, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275048

RESUMEN

Sorghum (Sorghum bicolor L.) ranks as the fifth most widely planted cereal in the world and is used for food as well as a biomass plant for ethanol production. Use of the TX430 non-tannin sorghum variety has enhanced Agrobacterium-mediated sorghum transformation. These protocols could not be applied, however, to other tannin producing sorghum varieties such as the BTx623 model cultivar for sorghum with full genome information of sorghum. Here we report an improved protocol for Agrobacterium-mediated genetic transformation of tannin-producing sorghum variety BTx623. We successfully developed modification of root regeneration condition for generation of transgenic plant of BTx623. We inoculated immature embryos with Agrobacterium tumefaciens strain EHA105 harboring pMDC32-35S-GFP to generate transgenic plants. In the root regeneration step, we found that regeneration from transformed calli was affected by tannin. For root regeneration, shoots that appeared were not transferred to agar plate, but instead transferred to vermiculite in a plastic pod. Direct planting of regenerated shoots into vermiculite prevented the toxic effect of tannin. Root regeneration efficiency from calli emerged shoots in vermiculite was 78.57%. Presence of sGFP transgene in the genome of transgenic plants was confirmed by PCR and sGFP expression was confirmed in transgenic plants. This improved protocol of Agrobacterium-mediated transformation for tannin-producing sorghum BTx623 could be a useful tool for functional genomics using this plant.

14.
DNA Res ; 22(6): 485-93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26546227

RESUMEN

Sorghum bicolor is one of the most important crops for food and bioethanol production. Its small diploid genome and resistance to environmental stress make sorghum an attractive model for studying the functional genomics of the Saccharinae and other C4 grasses. We analyzed the domain-based functional annotation of the cDNAs using the gene ontology (GO) categories for molecular function to characterize all the genes cloned in the full-length cDNA library of sorghum. The sorghum cDNA library successfully captured a wide range of cDNA-encoded proteins with various functions. To characterize the protein function of newly identified cDNAs, a search of their deduced domains and comparative analyses in the Oryza sativa and Zea mays genomes were carried out. Furthermore, genes on the sense strand corresponding to antisense transcripts were classified based on the GO of molecular function. To add more information about these genes, we have analyzed the expression profiles using RNA-Seq of three tissues (spikelet, seed and stem) during the starch-filling phase. We performed functional analysis of tissue-specific genes and expression analysis of genes of starch biosynthesis enzymes. This functional analysis of sorghum full-length cDNAs and the transcriptome information will facilitate further analysis of the Saccharinae and grass families.


Asunto(s)
ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Sorghum/genética , Zea mays/genética , ADN Complementario/análisis , Genómica , Almidón/biosíntesis , Almidón/genética , Transcripción Genética
15.
J Exp Bot ; 58(5): 957-67, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17185736

RESUMEN

Anthocyanins and betacyanins, two types of red pigment, have never been found to occur together in plants. Although anthocyanins are widely distributed in higher plants, betacyanins have replaced anthocyanins in the Caryophyllales. The accumulation of flavonols in the Caryophyllales suggests that the step(s) of anthocyanin biosynthesis from dihydroflavonols to anthocyanins could be blocked in the Caryophyllales. Dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) cDNAs were isolated from plants of the Caryophyllales. An enzyme activity assay showed that the Caryophyllales possess functional DFR and ANS. The expression profile revealed that DFR and ANS are not expressed in most tissues and organs except the seeds in Spinacia oleracea. Here, the promoter regions of DFR and ANS were isolated from S. oleracea. Analysis of DFR and ANS promoter sequences revealed several putative transcriptional factor-binding motifs. A yeast one-hybrid assay showed that Petunia hybrida AN2 (PhAN2) and JAF13 (PhJAF13), which were the regulators of anthocyanin synthesis in P. hybrida, could bind to the S. oleracea DFR and ANS promoters. However, the transient assay in Phytolacca americana cell cultures and leaves of S. oleracea showed that the promoters were not activated by ectopic expression of PhAN2 and PhJAF13, while the DFR and ANS promoters of Arabidopsis thaliana, an anthocyanin-producing species, were activated. One possible explanation for the lack of anthocyanins in the Caryophyllales is the difference in the promoter regions of DFR and ANS compared with those of anthocyanin-producing species.


Asunto(s)
Antocianinas/biosíntesis , Caryophyllaceae/genética , Caryophyllaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Transcripción Genética , Secuencia de Aminoácidos , Antocianinas/química , Secuencia de Bases , Clonación Molecular , Datos de Secuencia Molecular , Estructura Molecular , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Saccharomyces cerevisiae , Spinacia oleracea/genética , Spinacia oleracea/metabolismo
16.
Plant J ; 44(6): 950-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16359388

RESUMEN

Red colors in flowers are mainly produced by two types of pigments: anthocyanins and betacyanins. Although anthocyanins are widely distributed in higher plants, betacyanins have replaced anthocyanins in the Caryophyllales. There has been no report so far to find anthocyanins and betacyanins existing together within the same plant. This curious phenomenon has been examined from genetic and evolutionary perspectives, however nothing is known at the molecular level about the mutual exclusion of anthocyanins and betacyanins in higher plants. Here, we show that spinach (Spinacia oleracea) and pokeweed (Phytolacca americana), which are both members of the Caryophyllales, have functional anthocyanidin synthases (ANSs). The ability of ANSs of the Caryophyllales to oxidize trans-leucocyanidin to cyanidin is comparable to that of ANSs in anthocyanin-producing plants. Expression profiles reveal that, in spinach, dihydroflavonol 4-reductase (DFR) and ANS are not expressed in most tissues and organs, except seeds, in which ANS may contribute to proanthocyanidin synthesis. One possible explanation for the lack of anthocyanins in the Caryophyllales is the suppression or limited expression of the DFR and ANS.


Asunto(s)
Oxigenasas/biosíntesis , Phytolacca americana/enzimología , Spinacia oleracea/enzimología , Secuencia de Aminoácidos , Antocianinas/biosíntesis , Antocianinas/química , Glucosiltransferasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Oxigenasas/química , Oxigenasas/genética , Filogenia , ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
17.
Plant Cell Physiol ; 45(9): 1290-8, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15509852

RESUMEN

Two types of red pigment, anthocyanins and betacyanins, never occur together in the same plant. Although anthocyanins are widely distributed in higher plants as flower and fruit pigments, betacyanins have replaced anthocyanins in the Caryophyllales. We isolated cDNAs encoding dihydroflavonol 4-reductase (DFR), which is the first enzyme committed to anthocyanin biosynthesis in the flavonoid pathway, from Spinacia oleracea and Phytolacca americana, plants that belong to the Caryophyllales. The deduced amino acid sequence of Spinacia DFR and Phytolacca DFR revealed a high degree of homology with DFRs of anthocyanin-producing plants. The DFR of carnation, an exception in the Caryophyllales that synthesizes anthocyanin, showed the highest level of identity. In the phylogenetic tree, Spinacia DFR and Phytolacca DFR clustered with the DFRs of anthocyanin-synthesizing dicots. Recombinant Spinacia and Phytolacca DFRs expressed in Escherichia coli convert dihydroflavonol to leucoanthocyanidin. The expression and function of DFR in spinach and pokeweed are discussed in relation to the molecular evolution of red pigment biosynthesis in higher plants.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Caryophyllaceae/enzimología , ADN Complementario/aislamiento & purificación , Oxidorreductasas de Alcohol/química , Secuencia de Aminoácidos , Antocianinas/biosíntesis , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , ADN Complementario/genética , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA