Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Science ; 241(4872): 1475-9, 1988 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-17790041

RESUMEN

Mixed single crystals composed of host and guest organic molecules of similar structures and shapes are shown to comprise sectors with different host-guest distributions and to have symmetries lower than that of the host crystal. These properties are determined by the structure of the guest and the surface structures of the crystal faces through which the guest molecules are occluded. This general concept is illustrated by studies of three mixed crystal systems,(E)-cinnamamide-(E)-2-thienylacrylamide, (E)-cinnamamide-(E)-3-thienylacrylamide, and(S)-asparagine-(S)-aspartic acid, with x-ray and neutron diffraction and solid-state photochemistry.

2.
Structure ; 5(3): 381-90, 1997 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-9083107

RESUMEN

BACKGROUND: The scaffoldin component of the cellulolytic bacterium Clostridium thermocellum is a non-hydrolytic protein which organizes the hydrolytic enzymes in a large complex, called the cellulosome. Scaffoldin comprises a series of functional domains, amongst which is a single cellulose-binding domain and nine cohesin domains which are responsible for integrating the individual enzymatic subunits into the complex. The cohesin domains are highly conserved in their primary amino acid sequences. These domains interact with a complementary domain, termed the dockerin domain, one of which is located on each enzymatic subunit. The cohesin-dockerin interaction is the crucial interaction for complex formation in the cellulosome. The determination of structural information about the cohesin domain will provide insights into cellulosome assembly and activity. RESULTS: We have determined the three-dimensional crystal structure of one of the cohesin domains from C. thermocellum (cohesin 2) at 2.15 A resolution. The domain forms a nine-stranded beta sandwich with a jelly-roll topology, somewhat similar to the fold displayed by its neighboring cellulose-binding domain. CONCLUSIONS: The compact nature of the cohesin structure and its lack of a defined binding pocket suggests that binding between the cohesin and dockerin domains is characterized by interactions between exposed surface residues. As the cohesin-dockerin interaction appears to be rather nonselective, the binding face would presumably be characterized by surface residues which exhibit both intraspecies conservation and interspecies dissimilarity. Within the same species, unconserved surface residues may reflect the position of a given cohesin domain within the scaffoldin subunit, its orientation and interactions with neighboring domains.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Clostridium/química , Complejos Multienzimáticos/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
3.
J Mol Biol ; 232(3): 826-38, 1993 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-8355273

RESUMEN

The crystal structure of the DNA-binding domain of bacteriophage 434 repressor (R1-69) in complex with a 20 base-pair DNA fragment has been determined to 2.5 A resolution. The DNA fragment contains the sequence of the OR2 operator site, which differs from the previously studied OR1 site at three of the variable six central base-pairs. Comparison of the two structures shows that the overall bent conformation of the DNA backbone as well as the pattern of DNA-protein interactions seen in the OR1/R1-69 complex are maintained in the OR2 complex. However, the conformations of the DNA base-pairs are different in the two structures. In particular, the central base-pairs of OR2/R1-69 structure are more co-planar than in OR1/R1-69, and there are no cross-strand "bifurcated" hydrogen bonds. These results show that binding of the protein causes operator DNA to adopt a particular, well-defined backbone conformation, and they reinforce the notion that the energetic cost of achieving this conformation, most likely different for different sequences, can determine, at least in part, the relative affinity of the repressor for different operator sites.


Asunto(s)
Bacteriófagos/genética , ADN Viral/química , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/metabolismo , Proteínas Virales/metabolismo , Arginina/química , Arginina/metabolismo , Secuencia de Bases , ADN Viral/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fosfatos de Azúcar/química , Fosfatos de Azúcar/metabolismo
4.
J Biotechnol ; 51(3): 243-9, 1996 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8988649

RESUMEN

The cellulosome of the cellulolytic bacterium, Clostridium thermocellum, is a multi-enzyme complex in which the enzymatic (cellulolytic) subunits are attached to a unique nonhydrolytic subunit called scaffoldin. The attachment is mediated by two mutually interacting domains: namely multiple cohesin domains on the scaffoldin subunit and a dockerin domain on each of the enzymatic subunits. Knowledge of the three-dimensional structure of each of the interacting components would be critical to a better understanding of the cohesin-dockerin interaction at the molecular level. In this report, we describe the purification of one of the nine cohesin domains of the scaffoldin subunit from C. thermocellum. A DNA segment containing the cohesin 2 sequence was fused to a hexa-histidine tag, and the resultant construct was expressed in Escherichia coli. The expressed peptide was efficiently isolated by metal-chelate affinity chromatography. The purified recombinant form of the cohesin was crystallized pending determination of its structure.


Asunto(s)
Celulasa/química , Celulasa/genética , Clostridium/enzimología , Clostridium/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Secuencia de Aminoácidos , Secuencia de Bases , Biotecnología , Celulasa/aislamiento & purificación , Clonación Molecular , Cristalización , ADN Bacteriano/genética , Escherichia coli/genética , Expresión Génica , Genes Bacterianos , Datos de Secuencia Molecular , Complejos Multienzimáticos/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
5.
J Struct Biol ; 124(2-3): 221-34, 1998 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-10049808

RESUMEN

The cellulosome is a macromolecular machine, whose components interact in a synergistic manner to catalyze the efficient degradation of cellulose. The cellulosome complex is composed of numerous kinds of cellulases and related enzyme subunits, which are assembled into the complex by virtue of a unique type of scaffolding subunit (scaffoldin). Each of the cellulosomal subunits consists of a multiple set of modules, two classes of which (dockerin domains on the enzymes and cohesin domains on scaffoldin) govern the incorporation of the enzymatic subunits into the cellulosome complex. Another scaffoldin module-the cellulose-binding domain-is responsible for binding to the substrate. Some cellulosomes appear to be tethered to the cell envelope via similarly intricate, multiple-domain anchoring proteins. The assemblage is organized into dynamic polycellulosomal organelles, which adorn the cell surface. The cellulosome dictates both the binding of the cell to the substrate and its extracellular decomposition to soluble sugars, which are then taken up and assimilated by normal cellular processes.


Asunto(s)
Celulasa/química , Celulasa/ultraestructura , Celulosa/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/ultraestructura , Membrana Celular/ultraestructura , Celulasa/metabolismo , Clostridium/enzimología , Clostridium/ultraestructura , Glicósido Hidrolasas/metabolismo , Sustancias Macromoleculares , Modelos Moleculares , Complejos Multienzimáticos , Trichoderma/enzimología
6.
Acta Crystallogr D Biol Crystallogr ; 53(Pt 1): 114-5, 1997 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15299979

RESUMEN

Recombinant cohesin-2, a unique type of protein-recognition domain from the cellulosome of Clostridium thermocellum, has been crystallized by the hanging-drop vapor-diffusion method. The crystals are monoclinic, space group C2 with unit-cell dimensions a = 79.91, b = 47.86, c = 51.13 A, beta = 126.77 degrees. There is most likely to be one molecule per asymmetric unit, corresponding to a packing density of 2.16 A(3) Da(-1). The crystals diffract to beyond 2.3 A on a conventional laboratory rotating-anode source.

7.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 12): 1560-8, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11092922

RESUMEN

The crystal structure of the family IIIa cellulose-binding domain (CBD) from the cellulosomal scaffoldin subunit (CipC) of Clostridium cellulolyticum has been determined. The structure reveals a nine-stranded jelly-roll topology which exhibits distinctive structural elements consistent with family III CBDs that bind crystalline cellulose. These include a well conserved calcium-binding site, a putative cellulose-binding surface and a conserved shallow groove of unknown function. The CipC CBD structure is very similar to the previously elucidated family IIIa CBD from the CipA scaffoldin of C. thermocellum, with some minor differences. The CipC CBD structure was also compared with other previously described CBD structures from families IIIc and IV derived from the endoglucanases of Thermomonospora fusca and Cellulomonas fimi, respectively. The possible functional consequences of structural similarities and differences in the shallow groove and cellulose-binding faces among various CBD families and subfamilies are discussed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Clostridium/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Celulosa/metabolismo , Cristalografía por Rayos X , Proteínas de la Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA