Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(13): 16328-16339, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516946

RESUMEN

Kesterite-based Cu2ZnSn(S,Se)4 (CZTSSe) thin-film solar cells (TFSCs) are a promising candidate for low-cost, clean energy production owing to their environmental friendliness and the earth-abundant nature of their constituents. However, the advancement of kesterite TFSCs has been impeded by abundant defects and poor microstructure, limiting their performance potential. In this study, we present efficient Ag-alloyed CZTSSe TFSCs enabled by a facile metallic precursor engineering approach. The positioning of the Ag nanolayer in the metallic stacked precursor proves crucial in expediting the formation of Cu-Sn metal alloys during the alloying process. Specifically, Ag-included metallic precursors promote the growth of larger grains and a denser microstructure in CZTSSe thin films compared to those without Ag. Moreover, the improved uniformity of Ag, facilitated by the evaporation deposition technique, significantly suppresses the formation of detrimental defects and related defect clusters. This suppression effectively reduces nonradiative recombination, resulting in enhanced performance in kesterite TFSCs. This study not only introduces a metallic precursor engineering strategy for efficient kesterite-based TFSCs but also accelerates the development of microstructure evolution from metallic stacked precursors to metal chalcogenide compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA