Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37414545

RESUMEN

Plants have evolved sex chromosomes independently in many lineages, and loss of separate sexes can also occur. In this study, we assembled a monoecious recently hexaploidized persimmon (Diospyros kaki), in which the Y chromosome has lost the maleness-determining function. Comparative genomic analysis of D. kaki and its dioecious relatives uncovered the evolutionary process by which the nonfunctional Y chromosome (or Ymonoecy) was derived, which involved silencing of the sex-determining gene, OGI, approximately 2 million years ago. Analyses of the entire X and Ymonoecy chromosomes suggested that D. kaki's nonfunctional male-specific region of the Y chromosome (MSY), which we call a post-MSY, has conserved some characteristics of the original functional MSY. Specifically, comparing the functional MSY in Diospyros lotus and the nonfunctional "post-MSY" in D. kaki indicated that both have been rapidly rearranged, mainly via ongoing transposable element bursts, resembling structural changes often detected in Y-linked regions, some of which can enlarge the nonrecombining regions. The recent evolution of the post-MSY (and possibly also MSYs in dioecious Diospyros species) therefore probably reflects these regions' ancestral location in a pericentromeric region, rather than the presence of male-determining genes and/or genes controlling sexually dimorphic traits.


Asunto(s)
Diospyros , Diospyros/genética , Cromosoma Y , Cromosomas Sexuales/genética
2.
Theor Appl Genet ; 137(6): 127, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733416

RESUMEN

KEY MESSAGE: Quantitative trait locus analysis identified independent novel loci in cucumbers responsible for resistance to races 0 and 1 of the anthracnose fungal pathogen Colletotrichum orbiculare. Cucumbers have been reported to be vulnerable to Colletotrichum orbiculare, causing anthracnose disease with significant yield loss under favorable conditions. The deployment of a single recessive Cssgr gene in cucumber breeding for anthracnose resistance was effective until a recent report on high-virulent strains infecting cucumbers in Japan conquering the resistance. QTL mapping was conducted to identify the resistance loci in the cucumber accession Ban Kyuri (G100) against C. orbiculare strains 104-T and CcM-1 of pathogenic races 0 and 1, respectively. A single dominant locus An5 was detected in the disease resistance hotspot on chromosome 5 for resistance to 104-T. Resistance to CcM-1 was governed by three loci with additive effects located on chromosomes 2 (An2) and 1 (An1.1 and An1.2). Molecular markers were developed based on variant calling between the corresponding QTL regions in the de novo assembly of the G100 genome and the publicly available cucumber genomes. Multiple backcrossed populations were deployed to fine-map An5 locus and narrow the region to approximately 222 kbp. Accumulation of An2 and An1.1 alleles displayed an adequate resistance to CcM-1 strain. This study provides functional molecular markers for pyramiding resistance loci that confer sufficient resistance against anthracnose in cucumbers.


Asunto(s)
Mapeo Cromosómico , Colletotrichum , Cucumis sativus , Resistencia a la Enfermedad , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Cucumis sativus/microbiología , Cucumis sativus/genética , Colletotrichum/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Fenotipo , Ligamiento Genético , Genes de Plantas , Fitomejoramiento
3.
Plant J ; 110(3): 720-734, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35122338

RESUMEN

Pineapple (Ananas comosus (L.) Merr.) is one of the most economically important tropical fruit species. The major aim of the breeding programs in several countries, including Japan, is quality improvement, mainly for the fresh market. 'Yugafu', a Japanese cultivar with distinctive pipe-type leaf margin phenotype and white flesh color, is popular for fresh consumption. Therefore, genome sequencing of 'Yugafu' is expected to assist pineapple breeding. Here, we developed a haplotype-resolved assembly for the heterozygous genome of 'Yugafu' using long-read sequencing technology and obtained a pair of 25 pseudomolecule sequences inherited from the parental accessions 'Cream pineapple' and 'HI101'. The causative genes for leaf margin and fruit flesh color were identified. Fine mapping revealed a 162-kb region on CLG23 for the leaf margin phenotype. In this region, 20 kb of inverted repeat was specifically observed in the 'Cream pineapple' derived allele, and the WUSCHEL-related homeobox 3 (AcWOX3) gene was predicted as the key gene for leaf margin morphogenesis. Dominantly repressed AcWOX3 via RNAi was suggested to be the cause of the pipe-type leaf margin phenotype. Quantitative trait locus (QTL) analysis revealed that the terminal region of CLG08 contributed to white flesh and low carotenoid content. Carotenoid cleaved dioxygenase 4 (AcCCD4), a key gene for carotenoid degradation underlying this QTL, was predicted as the key gene for white flesh color through expression analysis. These findings could assist in modern pineapple breeding and facilitate marker-assisted selection for important traits.


Asunto(s)
Ananas , Ananas/genética , Frutas/genética , Haplotipos/genética , Fenotipo , Hojas de la Planta/genética
4.
Plant Cell Physiol ; 64(2): 248-257, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36755428

RESUMEN

Nicotiana benthamiana is widely used as a model plant for dicotyledonous angiosperms. In fact, the strains used in research are highly susceptible to a wide range of viruses. Accordingly, these strains are subject to plant pathology and plant-microbe interactions. In terms of plant-plant interactions, N. benthamiana is one of the plants that exhibit grafting affinity with plants from different families. Thus, N. benthamiana is a good model for plant biology and has been the subject of genome sequencing analyses for many years. However, N. benthamiana has a complex allopolyploid genome, and its previous reference genome is fragmented into 141,000 scaffolds. As a result, molecular genetic analysis is difficult to perform. To improve this effort, de novo whole-genome assembly was performed in N. benthamiana with Hifi reads, and 1,668 contigs were generated with a total length of 3.1 Gb. The 21 longest scaffolds, regarded as pseudomolecules, contained a 2.8-Gb sequence, occupying 95.6% of the assembled genome. A total of 57,583 high-confidence gene sequences were predicted. Based on a comparison of the genome structures between N. benthamiana and N. tabacum, N. benthamiana was found to have more complex chromosomal rearrangements, reflecting the age of interspecific hybridization. To verify the accuracy of the annotations, the cell wall modification genes involved in grafting were analyzed, which revealed not only the previously indeterminate untranslated region, intron and open reading frame sequences but also the genomic locations of their family genes. Owing to improved genome assembly and annotation, N. benthamiana would increasingly be more widely accessible.


Asunto(s)
Genes de Plantas , Nicotiana , Nicotiana/genética , Genómica , Genoma de Planta
5.
Theor Appl Genet ; 136(6): 136, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231314

RESUMEN

KEY MESSAGE: Japanese weedy melon exhibits unique sex expression with interactions between previously reported sex determination genes and two novel loci. Sex expression contributes to fruit quality and yield in the Cucurbitaceae. In melon, orchestrated regulation by sex determination genes explains the mechanism of sex expression, resulting in a great variety of sexual morphologies. In this study, we examined the Japanese weedy melon UT1, which does not follow the reported model of sex expression. We conducted QTL analysis using F2 plants for flower sex on the main stem and the lateral branch and mapped "occurrence of pistil-bearing flower on the main stem" locus on Chr. 3 (Opbf3.1) and "type of pistil-bearing flower" (female or bisexual) loci on Chr. 2 (tpbf2.1) and Chr. 8 (tpbf8.1). The Opbf3.1 included the known sex determination gene CmACS11. Sequence comparison of CmACS11 between parental lines revealed three nonsynonymous SNPs. A CAPS marker developed from one of the SNPs was closely linked to the occurrence of pistil-bearing flowers on the main stem in two F2 populations with different genetic backgrounds. The UT1 allele on Opbf3.1 was dominant in F1 lines from crosses between UT1 and diverse cultivars and breeding lines. This study suggests that Opbf3.1 and tpbf8.1 may promote the development of pistil and stamen primordia by inhibiting CmWIP1 and CmACS-7 functions, respectively, making the UT1 plants hermaphrodite. The results of this study provide new insights into the molecular mechanisms of sex determination in melons and considerations for the application of femaleness in melon breeding.


Asunto(s)
Cucurbitaceae , Cucurbitaceae/genética , Flores/genética , Fitomejoramiento
6.
PLoS Genet ; 16(2): e1008566, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32069274

RESUMEN

Most angiosperms bear hermaphroditic flowers, but a few species have evolved outcrossing strategies, such as dioecy, the presence of separate male and female individuals. We previously investigated the mechanisms underlying dioecy in diploid persimmon (D. lotus) and found that male flowers are specified by repression of the autosomal gene MeGI by its paralog, the Y-encoded pseudo-gene OGI. This mechanism is thought to be lineage-specific, but its evolutionary path remains unknown. Here, we developed a full draft of the diploid persimmon genome (D. lotus), which revealed a lineage-specific whole-genome duplication event and provided information on the architecture of the Y chromosome. We also identified three paralogs, MeGI, OGI and newly identified Sister of MeGI (SiMeGI). Evolutionary analysis suggested that MeGI underwent adaptive evolution after the whole-genome duplication event. Transformation of tobacco plants with MeGI and SiMeGI revealed that MeGI specifically acquired a new function as a repressor of male organ development, while SiMeGI presumably maintained the original function. Later, a segmental duplication event spawned MeGI's regulator OGI on the Y-chromosome, completing the path leading to dioecy, and probably initiating the formation of the Y-chromosome. These findings exemplify how duplication events can provide flexible genetic material available to help respond to varying environments and provide interesting parallels for our understanding of the mechanisms underlying the transition into dieocy in plants.


Asunto(s)
Diospyros/genética , Evolución Molecular , Genoma de Planta/genética , Procesos de Determinación del Sexo , Cromosomas de las Plantas/genética , Diploidia , Flores/genética , Filogenia , Cromosomas Sexuales/genética
7.
PLoS Genet ; 16(5): e1008845, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453757

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1008566.].

8.
Breed Sci ; 73(3): 349-353, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37840979

RESUMEN

Somaclonal variation was studied by whole-genome sequencing in rice plants (Oryza sativa L., 'Nipponbare') regenerated from the zygotes, mature embryos, and immature embryos of a single mother plant. The mother plant and its seed-propagated progeny were also sequenced. A total of 338 variants of the mother plant sequence were detected in the progeny, and mean values ranged from 9.0 of the seed-propagated plants to 37.4 of regenerants from mature embryos. The natural mutation rate of 1.2 × 10-8 calculated using the variants in the seed-propagated plants was consistent with the values reported previously. The ratio of single nucleotide variants (SNVs) among the variants in the seed-propagated plants was 91.1%, which is higher than 56.1% previously reported, and not significantly different from those in the regenerants. Overall, the ratio of transitions to transversions of SNVs was lower in the regenerants as shown previously. Plants regenerated from mature embryos had significantly more variants than different progeny types. Therefore, using zygotes and immature embryos can reduce somaclonal variation during the genetic manipulation of rice.

9.
Mol Genet Genomics ; 297(3): 711-718, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35290520

RESUMEN

Rice cultivation was introduced into Japan 3000 years ago and has expanded across the country and encompasses a wide variety of environmental conditions. Here, we elucidated the differentiation of the genetic population structure of 1037 rice landraces across Japan. Using 4451 polymorphisms derived from genome-wide analysis of double-digest restriction-site-associated DNA analysis, population genomics including ADMIXTURE and principal component analysis was carried out. These landraces were classified into nine subpopulations based on geographical origin. Massive-scale genotyping and diversity analysis demonstrated that the differentiation of genetic population structure in rice landraces across Japan might consist of two phases, namely western to eastern and southern to northern phases. The differentiation of genetic population structure was detected only in landraces from three geographical regions, Hokuriku, Tohoku, and Hokkaido, as the southern to northern phase. Conversely, differentiation was not observed in landraces from six geographical regions, Kyushu, Shikoku, Chugoku, Kinki, Tokai, and Kanto, as the western to eastern phase. The genetic population structure may have facilitated the expansion of genetic diversity among local regions.


Asunto(s)
Oryza , Estructuras Genéticas , Variación Genética , Genética de Población , Japón , Oryza/genética , Polimorfismo Genético
10.
Theor Appl Genet ; 135(1): 291-299, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34731272

RESUMEN

KEY MESSAGE: Gene distributions and population genomics suggest artificial selection of ghd7 osprr37, for extremely early heading date of rice, in the Tohoku region of Japan. The ranges of cultivated crops expanded into various environmental conditions around the world after their domestication. Hokkaido, Japan, lies at the northern limit of cultivation of rice, which originated in the tropics. Novel genotypes for extremely early heading date in Hokkaido are controlled by loss-of-function of both Grain number, plant height and heading date 7 (Ghd7) and Oryza sativa Pseudo-Response Regulator 37 (OsPRR37). We traced genotypes for extremely early heading date and analyzed the phylogeny of rice varieties grown historically in Japan. The mutations in Ghd7 and OsPRR37 had distinct local distributions. Population genomics revealed that varieties collected from the Tohoku region of northern Japan formed three clusters. Mutant alleles of Ghd7 and OsPRR37 appear to have allowed rice cultivation to spread into Hokkaido. Our results show that the mutations of two genes might be occurred in the process of artificial selection during early rice cultivation in the Tohoku region.


Asunto(s)
Genes de Plantas , Oryza/crecimiento & desarrollo , Oryza/genética , Genotipo , Mutación , Filogenia , Fitomejoramiento , Selección Genética
11.
Physiol Plant ; 174(1): e13623, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35018642

RESUMEN

Peanut being an important food, oilseed and fodder crop worldwide, its genetic improvement currently relies on genomics-assisted breeding (GAB). Since the level of marker polymorphism is limited in peanut, the availability of a large number of DNA markers is the prerequisite for GAB. Therefore, we detected 4,309,724 single nucleotide polymorphisms (SNPs) from the whole genome re-sequencing (WGRS) data of 178 peanut accessions along with the reference genome sequence of Tifrunner. SNPs were analyzed for their structural and functional features to conclude on their utility and employability in genetic and genomic studies. ISATGR278-18, a synthetic amphidiploid, showed the highest number of SNPs (2,505,266), while PI_628538 recorded the lowest number (19,058) of SNPs. A03 showed the highest number of SNPs, while B08 recorded the lowest number of SNPs. The number of accessions required to record 50% of the total SNPs varied from 11 to 13 across the chromosomes. The rate of transitions was more than that of transversions. Among the various chromosomal contexts, intergenic and intronic regions carried more SNPs than the exonic regions. SNP impact analysis indicated 2488 SNPs with high impact due to gain of stop codons, variations in splice acceptors and splice donors, and loss of start codons. Of the 4,309,723 SNPs, 46,087 had the highest polymorphic information content (PIC) of 0.375. As an illustration of application, the drought-tolerant accession C76-16 was compared with A72 (an accession with high-stress rating) to identify 637,833 SNPs, of which 418 had high impact substitutions. Overall, these structural and functional features of the SNPs will be of immense importance for their utility in genetic and genomic studies in peanut.


Asunto(s)
Arachis , Polimorfismo de Nucleótido Simple , Arachis/genética , Marcadores Genéticos , Genoma de Planta/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
13.
Plant J ; 102(6): 1313-1322, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31978270

RESUMEN

Ficus erecta, a wild relative of the common fig (F. carica), is a donor of Ceratocystis canker resistance in fig breeding programmes. Interspecific hybridization followed by recurrent backcrossing is an effective method to transfer the resistance trait from wild to cultivated fig. However, this process is time consuming and labour intensive for trees, especially for gynodioecious plants such as fig. In this study, genome resources were developed for F. erecta to facilitate fig breeding programmes. The genome sequence of F. erecta was determined using single-molecule real-time sequencing technology. The resultant assembly spanned 331.6 Mb with 538 contigs and an N50 length of 1.9 Mb, from which 51 806 high-confidence genes were predicted. Pseudomolecule sequences corresponding to the chromosomes of F. erecta were established with a genetic map based on single nucleotide polymorphisms from double-digest restriction-site-associated DNA sequencing. Subsequent linkage analysis and whole-genome resequencing identified a candidate gene for the Ceratocystis canker resistance trait. Genome-wide genotyping analysis enabled the selection of female lines that possessed resistance and effective elimination of the donor genome from the progeny. The genome resources provided in this study will accelerate and enhance disease-resistance breeding programmes in fig.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Ficus/genética , Genoma de Planta/genética , Fitomejoramiento , Ficus/inmunología , Ficus/microbiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Ligamiento Genético , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
14.
Plant J ; 104(2): 351-364, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32652697

RESUMEN

The Elongator complex, which is conserved in eukaryotes, has multiple roles in diverse organisms. In Arabidopsis thaliana, Elongator is shown to be involved in development, hormone action and environmental responses. However, except for Arabidopsis, our knowledge of its function is poor in plants. In this study, we initially carried out a genetic analysis to characterize a rice mutant with narrow and curled leaves, termed curled later1 (cur1). The cur1 mutant displayed a heteroblastic change, whereby the mutant leaf phenotype appeared specifically at a later adult phase of vegetative development. The shoot apical meristem (SAM) was small and the leaf initiation rate was low, suggesting that the activity of the SAM seemed to be partially reduced in cur1. We then revealed that CUR1 encodes a yeast ELP1-like protein, the largest subunit of Elongator. Furthermore, disruption of OsELP3 encoding the catalytic subunit of Elongator resulted in phenotypes similar to those of cur1, including the timing of the appearance of mutant phenotypes. Thus, Elongator activity seems to be specifically required for leaf development at the late vegetative phase. Transcriptome analysis showed that genes involved in protein quality control were highly upregulated in the cur1 shoot apex at the later vegetative phase, suggesting the restoration of impaired proteins probably produced by partial defects in translational control due to the loss of function of Elongator. The differences in the mutant phenotype and gene expression profile between CUR1 and its Arabidopsis ortholog suggest that Elongator has evolved to play a unique role in rice development.


Asunto(s)
Meristema/fisiología , Oryza/fisiología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Histona Acetiltransferasas/genética , Complejos Multiproteicos , Mutación , Oryza/crecimiento & desarrollo , Factores de Elongación de Péptidos/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Subunidades de Proteína , Proteínas de Saccharomyces cerevisiae/genética
15.
BMC Plant Biol ; 21(1): 378, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399685

RESUMEN

BACKGROUND: Understanding mechanisms of sugar accumulation and composition is essential to determining fruit quality and maintaining a desirable balance of sugars in plant storage organs. The major sugars in mature Rosaceae fruits are sucrose, fructose, glucose, and sorbitol. Among these, sucrose and fructose have high sweetness, whereas glucose and sorbitol have low sweetness. Japanese pear has extensive variation in individual sugar contents in mature fruit. Increasing total sugar content and that of individual high-sweetness sugars is a major target of breeding programs. The objective of this study was to identify quantitative trait loci (QTLs) associated with fruit traits including individual sugar accumulation, to infer the candidate genes underlying the QTLs, and to assess the potential of genomic selection for breeding pear fruit traits. RESULTS: We evaluated 10 fruit traits and conducted genome-wide association studies (GWAS) for 106 cultivars and 17 breeding populations (1112 F1 individuals) using 3484 tag single-nucleotide polymorphisms (SNPs). By implementing a mixed linear model and a Bayesian multiple-QTL model in GWAS, 56 SNPs associated with fruit traits were identified. In particular, a SNP located close to acid invertase gene PPAIV3 on chromosome 7 and a newly identified SNP on chromosome 11 had quite large effects on accumulation of sucrose and glucose, respectively. We used 'Golden Delicious' doubled haploid 13 (GDDH13), an apple reference genome, to infer the candidate genes for the identified SNPs. In the region flanking the SNP on chromosome 11, there is a tandem repeat of early responsive to dehydration (ERD6)-like sugar transporter genes that might play a role in the phenotypes observed. CONCLUSIONS: SNPs associated with individual sugar accumulation were newly identified at several loci, and candidate genes underlying QTLs were inferred using advanced apple genome information. The candidate genes for the QTLs are conserved across Pyrinae genomes, which will be useful for further fruit quality studies in Rosaceae. The accuracies of genomic selection for sucrose, fructose, and glucose with genomic best linear unbiased prediction (GBLUP) were relatively high (0.67-0.75), suggesting that it would be possible to select individuals having high-sweetness fruit with high sucrose and fructose contents and low glucose content.


Asunto(s)
Genoma de Planta , Pyrus/química , Pyrus/genética , Azúcares/análisis , Mapeo Cromosómico , Cromosomas de las Plantas , Frutas/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
16.
Heredity (Edinb) ; 126(1): 194-205, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873965

RESUMEN

Interspecific hybridization is a common breeding approach for introducing novel traits and genetic diversity to breeding populations. Southern highbush blueberry (SHB) is a blueberry cultivar group that has been intensively bred over the last 60 years. Specifically, it was developed by multiple interspecific crosses between northern highbush blueberry [NHB, Vaccinium corymbosum L. (2n = 4x = 48)] and low-chill Vaccinium species to expand the geographic limits of highbush blueberry production. In this study, we genotyped polyploid blueberries, including 105 SHB, 17 NHB, and 10 rabbiteye blueberry (RE) (Vaccinium virgatum Aiton), from the accessions planted at Poplarville, Mississippi, and accessions distributed in Japan, based on the double-digest restriction site-associated DNA sequencing. The genome-wide SNP data clearly indicated that RE cultivars were genetically distinct from SHB and NHB cultivars, whereas NHB and SHB were genetically indistinguishable. The population structure results appeared to reflect the differences in the allele selection strategies that breeders used for developing germplasm adapted to local climates. The genotype data implied that there are no or very few genomic segments that were commonly introgressed from low-chill Vaccinium species to the SHB genome. Principal component analysis-based outlier detection analysis found a few loci associated with a variable that could partially differentiate NHB and SHB. These SNP loci were detected in Mb-scale haplotype blocks and may be close to the functional genes related to SHB development. Collectively, the data generated in this study suggest a polygenic adaptation of SHB to the southern climate, and may be relevant for future population-scale genome-wide analyses of blueberry.


Asunto(s)
Arándanos Azules (Planta) , Arándanos Azules (Planta)/genética , Estudio de Asociación del Genoma Completo , Genómica , Japón , Metagenómica
17.
Breed Sci ; 71(2): 117-124, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377059

RESUMEN

Genome sequence analysis in higher plants began with the whole-genome sequencing of Arabidopsis thaliana. Owing to the great advances in sequencing technologies, also known as next-generation sequencing (NGS) technologies, genomes of more than 400 plant species have been sequenced to date. Long-read sequencing technologies, together with sequence scaffolding methods, have enabled the synthesis of chromosome-level de novo genome sequence assemblies, which has further allowed comparative analysis of the structural features of multiple plant genomes, thus elucidating the evolutionary history of plants. However, the quality of the assembled chromosome-level sequences varies among plant species. In this review, we summarize the status of chromosome-level assemblies of 114 plant species, with genome sizes ranging from 125 Mb to 16.9 Gb. While the average genome coverage of the assembled sequences reached up to 89.1%, the average coverage of chromosome-level pseudomolecules was 73.3%. Thus, further improvements in sequencing technologies and scaffolding, and data analysis methods, are required to establish gap-free telomere-to-telomere genome sequence assemblies. With the forthcoming new technologies, we are going to enter into a new genomics era where pan-genomics and the >1,000 or >1 million genomes' project will be routine in higher plants.

18.
Breed Sci ; 71(2): 125-133, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377060

RESUMEN

Understanding genetic diversity among local populations is a primary goal of modern crop breeding programs. Here, we demonstrated the genetic relationships of rice varieties in Hokkaido, Japan, one of the northern limits of rice cultivation around the world. Furthermore, artificial selection during rice breeding programs has been characterized using genome sequences. We utilized 8,565 single nucleotide polymorphisms and insertion/deletion markers distributed across the genome in genotype-by-sequencing for genetic diversity analyses. Phylogenetics, genetic population structure, and principal component analysis showed that a total of 110 varieties were classified into four distinct clusters according to different populations geographically and historically. Furthermore, the genome sequences of 19 rice varieties along with historic representations in Hokkaido, nucleotide diversity and FST values in each cluster revealed that artificial selection of elite phenotypes focused on chromosomal regions. These results clearly demonstrated the history of the selections on agronomic traits as genome sequences among current rice varieties from Hokkaido.

19.
Breed Sci ; 71(2): 261-267, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377074

RESUMEN

White rust caused by Puccinia horiana Henn. adversely affects chrysanthemum (Chrysanthemum morifolium Ramat.) production. The breeding of resistant varieties is effective in controlling the disease. Here we aimed to develop DNA markers for the strong resistance to P. horiana. We conducted a linkage analysis based on the genome-wide association study (GWAS) method. We employed a biparental population for the GWAS, wherein the single nucleotide polymorphism (SNP) allele frequency could be predicted. The population was derived from crosses between a strong resistant "Southern Pegasus" and a susceptible line. The GWAS used simplex and double-simplex SNP markers selected out of SNP candidates mined from ddRAD-Seq data of an F1 biparental population. These F1 individuals segregated in a 1:1 ratio of resistant to susceptible. Twenty-one simplex SNPs were significantly associated with P. horiana resistance in "Southern Pegasus" and generated one linkage group. These results show the presence of a single resistance gene in "Southern Pegasus". We identified the nearest SNP marker located 2.2 cM from P. horiana resistance locus and demonstrated this SNP marker-resistance link using an independent population. This is the first report of an effective DNA marker linked to a gene for P. horiana resistance in chrysanthemum.

20.
Breed Sci ; 71(4): 456-466, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34912172

RESUMEN

Male sterility is one of the reproductive isolation systems in plants and quite useful for F1 seed production. We previously identified three independent quantitative trait loci (QTLs) for male sterility of cultivated strawberry, Here, we identified the specific subgenomes in which these QTLs are located by QTL-seq approach. QTLs qMS4.1, qMS4.2, and qMS4.3 were mapped separately in subgenomes Fvb4-4, Fvb4-3, and Fvb4-1, respectively, in 'Camarosa' genome assembly v. 1.0.a1. Candidate regions of qMS4.1 and qMS4.3 were clearly detected around 12-26 Mb in Fvb4-4 and 12-14 Mb in Fvb4-1, respectively; those of qMS4.2 were fragmented in Fvb4-3, which suggests that some scaffolds were incorrectly assembled in Fvb4-3. qMS4.3 was mapped to chr4X1 of 'Reikou' genome assembly r2.3, and qMS4.1 and qMS4.2 were both mapped to chr4Av, which indicates that differentiation of the subgenomes in which both QTLs are located was insufficient in 'Reikou' r2.3. Although 'Camarosa' genome assembly v. 1.0.a1 is an unphased map, which merges homologous chromosomes into one sequence, 'Reikou' genome assembly r2.3 is a phased map, which separates homologous chromosomes. QTL mapping to different reference genomes clearly showed the specific features of each reference genome, and that using different kinds of reference map could accelerate fine mapping and map-based cloning of certain genes of cultivated strawberry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA