Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 587(7832): 92-97, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32879491

RESUMEN

Quinones are produced and sensed in all kingdoms of life1-4. Plants are primary producers of quinone1,2, but the role of quinone as a signalling agent in plants remains largely unknown. One well-documented role of quinone is in the induction of haustoria (specialized feeding structures) in plants that parasitize roots, which occurs in the presence of the host-derived quinone compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ)5. However, how parasitic plants sense DMBQ remains unclear, as is whether nonparasitic plants are capable of sensing quinones. Here we use Arabidopsis thaliana and DMBQ as a model plant and quinone to show that DMBQ signalling occurs in Arabidopsis via elevation of cytosolic Ca2+ concentration. We performed a forward genetic screen in Arabidopsis that isolated DMBQ-unresponsive mutants, which we named cannot respond to DMBQ 1 (card1). The CANNOT RESPOND TO DMBQ 1 (CARD1; At5g49760, also known as HPCA1) gene encodes a leucine-rich-repeat receptor-like kinase that is highly conserved in land plants. In Arabidopsis, DMBQ triggers defence-related gene expression, and card1 mutants show impaired immunity against bacterial pathogens. In Phtheirospermum japonicum (a plant that parasitizes roots), DMBQ initiates Ca2+ signalling in the root and is important for the development of the haustorium. Furthermore, CARD1 homologues from this parasitic plant complement DMBQ-induced elevation of cytosolic Ca2+ concentration in the card1 mutant. Our results demonstrate that plants-unlike animals and bacteria-use leucine-rich-repeat receptor-like kinases for quinone signalling. This work provides insights into the role of quinone signalling and CARD1 functions in plants that help us to better understand the signalling pathways used during the formation of the haustorium in parasitic plants and in plant immunity in nonparasitic plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Benzoquinonas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Señalización del Calcio , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Mutación , Inmunidad de la Planta/genética , Proteínas Serina-Treonina Quinasas/genética
2.
Proc Natl Acad Sci U S A ; 120(15): e2221508120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37018204

RESUMEN

Soil-dwelling microbes are the principal inoculum for the root microbiota, but our understanding of microbe-microbe interactions in microbiota establishment remains fragmentary. We tested 39,204 binary interbacterial interactions for inhibitory activities in vitro, allowing us to identify taxonomic signatures in bacterial inhibition profiles. Using genetic and metabolomic approaches, we identified the antimicrobial 2,4-diacetylphloroglucinol (DAPG) and the iron chelator pyoverdine as exometabolites whose combined functions explain most of the inhibitory activity of the strongly antagonistic Pseudomonas brassicacearum R401. Microbiota reconstitution with a core of Arabidopsis thaliana root commensals in the presence of wild-type or mutant strains revealed a root niche-specific cofunction of these exometabolites as root competence determinants and drivers of predictable changes in the root-associated community. In natural environments, both the corresponding biosynthetic operons are enriched in roots, a pattern likely linked to their role as iron sinks, indicating that these cofunctioning exometabolites are adaptive traits contributing to pseudomonad pervasiveness throughout the root microbiota.


Asunto(s)
Arabidopsis , Microbiota , Bacterias/genética , Microbiota/genética , Simbiosis , Arabidopsis/genética , Interacciones Microbianas , Raíces de Plantas/genética , Microbiología del Suelo
3.
Plant Mol Biol ; 114(1): 7, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265485

RESUMEN

KEY MESSAGE: Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs. Here, we show that both PUB20 and PUB21 negatively regulate innate immunity in plants. Loss of PUB20 and PUB21 function leads to enhanced resistance to surface inoculation with the virulent bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the resistance levels remain unaffected after infiltration inoculation, suggesting that PUB20 and PUB21 primarily function during the early defense stages. The enhanced resistance to Pst DC3000 in PUB mutant plants (pub20-1, pub21-1, and pub20-1/pub21-1) correlates with extensive flg22-triggered reactive oxygen production, strong MPK3 activation, and enhanced transcriptional activation of early immune response genes. Additionally, PUB mutant plants (except pub21-1) exhibit constitutive stomatal closure after Pst DC3000 inoculation, implying the significant role of PUB20 in stomatal immunity. Comparative analyses of flg22 responses between PUB mutants and wild-type plants reveals that the robust activation of the pattern-induced immune responses may enhance resistance against Pst DC3000. Notably, the hypersensitivity responses triggered by RPM1/avrRpm1 and RPS2/avrRpt2 are independent of PUB20 and PUB21. These results suggest that PUB20 and PUB21 knockout mutations affect bacterial invasion, likely during the early stages, acting as negative regulators of plant immunity.


Asunto(s)
Arabidopsis , Reconocimiento de Inmunidad Innata , Inmunidad Innata , Proteínas de Plantas , Penicilina V , Ligasas
4.
New Phytol ; 241(4): 1763-1779, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37823353

RESUMEN

Perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP). PB1CP negatively regulates RBOHD and the resistance against the fungal pathogen Colletotrichum higginsianum. PB1CP competes with BIK1 for binding to RBOHD in vitro. Furthermore, PAMP treatment enhances the PB1CP-RBOHD interaction, thereby leading to the dissociation of phosphorylated BIK1 from RBOHD in vivo. PB1CP localizes at the cell periphery and PAMP treatment induces relocalization of PB1CP and RBOHD to the same small endomembrane compartments. Additionally, overexpression of PB1CP in Arabidopsis leads to a reduction in the abundance of RBOHD protein, suggesting the possible involvement of PB1CP in RBOHD endocytosis. We found PB1CP, a novel negative regulator of RBOHD, and revealed its possible regulatory mechanisms involving the removal of phosphorylated BIK1 from RBOHD and the promotion of RBOHD endocytosis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , NADPH Oxidasas , Inmunidad de la Planta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Oxidorreductasas/metabolismo , Fagocitosis , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
New Phytol ; 242(1): 170-191, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38348532

RESUMEN

Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity responses. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3'-end phosphate. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2, present in the apoplast, depends on ribonuclease catalytic residues. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.


Asunto(s)
Cucumis sativus , Ribonucleasas , Cucumis sativus/microbiología , Hongos , Plantas , Inmunidad , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta
6.
Plant Physiol ; 193(1): 259-270, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37307565

RESUMEN

The downy mildew oomycete Hyaloperonospora arabidopsidis, an obligate filamentous pathogen, infects Arabidopsis (Arabidopsis thaliana) by forming structures called haustoria inside host cells. Previous transcriptome analyses have revealed that host genes are specifically induced during infection; however, RNA profiling from whole-infected tissues may fail to capture key transcriptional events occurring exclusively in haustoriated host cells, where the pathogen injects virulence effectors to modulate host immunity. To determine interactions between Arabidopsis and H. arabidopsidis at the cellular level, we devised a translating ribosome affinity purification system using 2 high-affinity binding proteins, colicin E9 and Im9 (immunity protein of colicin E9), applicable to pathogen-responsive promoters, thus enabling haustoriated cell-specific RNA profiling. Among the host genes specifically expressed in H. arabidopsidis-haustoriated cells, we found genes that promote either susceptibility or resistance to the pathogen, providing insights into the Arabidopsis-downy mildew interaction. We propose that our protocol for profiling cell-specific transcripts will apply to several stimulus-specific contexts and other plant-pathogen interactions.


Asunto(s)
Arabidopsis , Colicinas , Oomicetos , Peronospora , Arabidopsis/genética , ARN/metabolismo , Colicinas/metabolismo , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética
7.
J Nat Prod ; 87(5): 1459-1470, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38652684

RESUMEN

Actinomycetes are prolific producers of natural products, particularly antibiotics. However, a significant proportion of its biosynthetic gene clusters (BGCs) remain silent under typical laboratory conditions. This limits the effectiveness of conventional isolation methods for the discovery of novel natural products. Genetic interventions targeting the activation of silent gene clusters are necessary to address this challenge. Streptomyces antibiotic regulatory proteins (SARPs) act as cluster-specific activators and can be used to target silent BGCs for the discovery of new antibiotics. In this study, the expression of a previously uncharacterized SARP protein, Syo_1.56, in Streptomyces sp. RK18-A0406 significantly enhanced the production of known antimycins and led to the discovery of 12 elasnins (1-12), 10 of which were novel. The absolute stereochemistry of elasnin A1 was assigned for the first time to be 6S. Unexpectedly, Syo_1.56 seems to function as a pleiotropic rather than cluster-specific SARP regulator, with the capability of co-regulating two distinct biosynthetic pathways, simultaneously. All isolated elasnins were active against wild-type and methicillin-resistant Staphylococcus aureus with IC50 values of 0.5-20 µg/mL, some of which (elasnins A1, B2, and C1 and proelasnins A1, and C1) demonstrated moderate to strong antimalarial activities against Plasmodium falciparum 3D7. Elasnins A1, B3, and C1 also showed in vitro inhibition of the metallo-ß-lactamase responsible for the development of highly antibiotic-resistant bacterial strains.


Asunto(s)
Antibacterianos , Streptomyces , Antibacterianos/farmacología , Antibacterianos/química , Streptomyces/química , Streptomyces/genética , Familia de Multigenes , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Estructura Molecular , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos
8.
Plant Cell Physiol ; 64(9): 955-966, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279572

RESUMEN

Strigolactones (SLs) are root-secreted small molecules that influence organisms living in the rhizosphere. While SLs are known as germination stimulants for root parasitic plants and as hyphal branching factors for arbuscular mycorrhizal fungi, recent studies have also identified them as chemoattractants for parasitic plants, sensors of neighboring plants and key players in shaping the microbiome community. Furthermore, the discovery of structurally diverged SLs, including so-called canonical and non-canonical SLs in various plant species, raises the question of whether the same SLs are responsible for their diverse functions 'in planta' and the rhizosphere or whether different molecules play different roles. Emerging evidence supports the latter, with each SL exhibiting different activities as rhizosphere signals and plant hormones. The evolution of D14/KAI2 receptors has enabled the perception of various SLs or SL-like compounds to control downstream signaling, highlighting the complex interplay between plants and their rhizosphere environment. This review summarizes the recent advances in our understanding of the diverse functions of SLs in the rhizosphere.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Rizosfera , Plantas/microbiología , Lactonas
9.
Development ; 147(14)2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32586973

RESUMEN

Parasitic plants form vascular connections with host plants for efficient material transport. The haustorium is the responsible organ for host invasion and subsequent vascular connection. After invasion of host tissues, vascular meristem-like cells emerge in the central region of the haustorium, differentiate into tracheary elements and establish a connection, known as a xylem bridge, between parasite and host xylem systems. Despite the importance of this parasitic connection, the regulatory mechanisms of xylem bridge formation are unknown. Here, we show the role of auxin and auxin transporters during the process of xylem bridge formation using an Orobanchaceae hemiparasitic plant, Phtheirospermum japonicum The auxin response marker DR5 has a similar expression pattern to tracheary element differentiation genes in haustoria. Auxin transport inhibitors alter tracheary element differentiation in haustoria, but biosynthesis inhibitors do not, demonstrating the importance of auxin transport during xylem bridge formation. The expression patterns and subcellular localization of PIN family auxin efflux carriers and AUX1/LAX influx carriers correlate with DR5 expression patterns. The cooperative action of auxin transporters is therefore responsible for controlling xylem vessel connections between parasite and host.


Asunto(s)
Arabidopsis/parasitología , Ácidos Indolacéticos/metabolismo , Orobanchaceae/fisiología , Xilema/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Orobanchaceae/crecimiento & desarrollo , Orobanchaceae/metabolismo , Fenilacetatos/farmacología , Ftalimidas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Interferencia de ARN , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Xilema/efectos de los fármacos , Xilema/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(25): 14552-14560, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513689

RESUMEN

Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive. To understand the network structure in agroecosystems engineered by several farming methods, including environmentally friendly soil solarization, we utilized a multiomics approach on a field planted with Brassica rapa We found that the soil solarization increased plant shoot biomass irrespective of the type of fertilizer applied. Our multiomics and integrated informatics revealed complex interactions in the agroecosystem showing multiple network modules represented by plant traits heterogeneously associated with soil metabolites, minerals, and microbes. Unexpectedly, we identified soil organic nitrogen induced by soil solarization as one of the key components to increase crop yield. A germ-free plant in vitro assay and a pot experiment using arable soils confirmed that specific organic nitrogen, namely alanine and choline, directly increased plant biomass by acting as a nitrogen source and a biologically active compound. Thus, our study provides evidence at the agroecosystem level that organic nitrogen plays a key role in plant growth.


Asunto(s)
Brassica rapa/crecimiento & desarrollo , Producción de Cultivos , Productos Agrícolas/crecimiento & desarrollo , Nitrógeno/metabolismo , Suelo/química , Alanina/química , Alanina/metabolismo , Biomasa , Brassica rapa/metabolismo , Colina/química , Colina/metabolismo , Productos Agrícolas/metabolismo , Conjuntos de Datos como Asunto , Redes y Vías Metabólicas/efectos de la radiación , Metabolómica , Microbiota/fisiología , Microbiota/efectos de la radiación , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Rizosfera , Microbiología del Suelo , Luz Solar
11.
J Biol Chem ; 297(6): 101370, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34756891

RESUMEN

Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection; however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species triggered by two different pathogen-associated molecular patterns, chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five ß-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel ß-barrel structure. However, the ß-strands were found to display a unique topology, one pair of these ß-strands formed a parallel ß-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress pathogen-associated molecular pattern-triggered immunity in N. benthamiana.


Asunto(s)
Colletotrichum/metabolismo , Proteínas Fúngicas/fisiología , Inmunidad de la Planta/fisiología , Agrobacterium/patogenicidad , Secuencia de Aminoácidos , Colletotrichum/patogenicidad , Proteínas Fúngicas/química , Interacciones Huésped-Patógeno , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Homología de Secuencia de Aminoácido , Nicotiana/metabolismo , Nicotiana/microbiología , Virulencia
12.
Plant Physiol ; 185(4): 1381-1394, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793894

RESUMEN

Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Orobanchaceae/genética , Orobanchaceae/metabolismo , Orobanchaceae/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Subtilisinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Parásitos/genética , Subtilisinas/genética
13.
Plant Physiol ; 185(4): 1429-1442, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793920

RESUMEN

Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.


Asunto(s)
Arabidopsis/parasitología , Interacciones Huésped-Parásitos/fisiología , Orobanchaceae/parasitología , Orobanchaceae/ultraestructura , Oryza/parasitología , Raíces de Plantas/ultraestructura , Striga/parasitología , Striga/ultraestructura , Arabidopsis/fisiología , Imagenología Tridimensional , Orobanchaceae/fisiología , Oryza/fisiología , Raíces de Plantas/parasitología
14.
Mol Cell ; 54(1): 43-55, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24630626

RESUMEN

The rapid production of reactive oxygen species (ROS) burst is a conserved signaling output in immunity across kingdoms. In plants, perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) activates the NADPH oxidase RBOHD by hitherto unknown mechanisms. Here, we show that RBOHD exists in complex with the receptor kinases EFR and FLS2, which are the PRRs for bacterial EF-Tu and flagellin, respectively. The plasma-membrane-associated kinase BIK1, which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. BIK1 phosphorylates different residues than calcium-dependent protein kinases, and both PAMP-induced BIK1 activation and BIK1-mediated phosphorylation of RBOHD are calcium independent. Importantly, phosphorylation of these residues is critical for the PAMP-induced ROS burst and antibacterial immunity. Our study reveals a rapid regulatory mechanism of a plant RBOH, which occurs in parallel with and is essential for its paradigmatic calcium-based regulation.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Inmunidad Innata , NADPH Oxidasas/inmunología , Nicotiana/enzimología , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Línea Celular , Activación Enzimática , Flagelina/inmunología , Flagelina/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ligandos , Datos de Secuencia Molecular , Complejos Multienzimáticos , NADPH Oxidasas/genética , Factor Tu de Elongación Peptídica/inmunología , Factor Tu de Elongación Peptídica/metabolismo , Fosforilación , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Proteínas Quinasas/inmunología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología
15.
Acta Virol ; 66(2): 157-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35766472

RESUMEN

Dicistroviruses (the family Dicistroviridae) are positive-sense single-stranded RNA viruses of the order Picornavirales, which is a rapidly growing viral group. They have been detected in a wide range of animals, predominantly in insects and crustaceans. In this study, we identified the genome sequences of 14 dicistro-like viruses in the transcriptome data from 12 plant species, including Striga asiatica dicistro-like virus 1 and 2 identified in the transcriptome data of Striga asiatica. Sequence comparison and phylogenetic analysis indicated that these 14 plant-associated dicistro-like viruses were novel members of the family Dicistroviridae, five of which are placed within the genera Aparavirus and Cripavirus, which mainly consist of viruses infecting animals, including insects. The other nine plant dicistro-like viruses formed clades with unclassified dicistroviruses. Our study implies that a wide range of plant species may serve as hosts for dicistroviruses or reservoirs for their transmission. Keywords: dicistrovirus; Dicistroviridae; plant; transcriptome; Striga asiatica.


Asunto(s)
Dicistroviridae , Virus ARN , Striga , Animales , Dicistroviridae/genética , Genoma Viral , Filogenia , Virus ARN/genética , Striga/genética , Transcriptoma
16.
Acta Virol ; 66(2): 149-156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35766471

RESUMEN

A novel, negative-sense, single-stranded RNA virus, Artemisia capillaris nucleorhabdovirus 1 (AcNRV1), was identified in the transcriptome data of Artemisia capillaris (commonly known as capillary wormwood) root tissue. The AcNRV1 genome contains six open reading frames encoding a nucleocapsid (N), phosphoprotein, movement protein P3, matrix protein, glycoprotein, and polymerase (L). Sequence comparison and phylogenetic analysis using L and N protein sequences revealed that AcNRV1 is a novel member of the genus Alphanucleorhabdovirus, one of the six plant-infecting rhabdovirus genera of the family Rhabdoviridae. Wheat yellow striate virus and rice yellow stunt virus were identified as the closest known rhabdoviruses of AcNRV1. The conserved regulatory sequences involved in transcription termination/polyadenylation (TTP) and transcription initiation (TI) of individual genes were identified in the AcNRV1 genome with the consensus sequence 3'-(A/U)UUAUUUUU-GGG-UUG-5' (in the negative-sense genome), whereby dashes separate the TTP, untranscribed intergenic spacer, and TI elements. The AcNRV1 genome sequence will contribute to further understanding the genome structural evolution of plant rhabdoviruses. Keywords: Artemisia capillaris nucleorhabdovirus 1; plant virus; Alphanucleorhabdovirus; Rhabdoviridae.


Asunto(s)
Artemisia , Rhabdoviridae , Artemisia/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , Rhabdoviridae/genética , Transcriptoma , Proteínas Virales/genética
17.
Acta Virol ; 66(3): 206-215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36029083

RESUMEN

The genome sequence of a closterovirus (genus Closterovirus, family Closteroviridae), tentatively named Thesium chinense closterovirus 1 (TcCV1), was identified by performing high-throughput RNA-sequencing of the haustoria and root tissues of Thesium chinense, a parasitic plant. The TcCV1 genome was predicted to encode nine proteins, eight of which have orthologs in previously identified closteroviruses. The TcCV1 RNA-dependent RNA polymerase (RdRp) and heat shock protein 70 homolog (Hsp70h) showed 27.8-68.2% and 23.8-55.1% amino acid identity, respectively, to orthologous proteins of known closteroviruses. The putative +1 ribosomal frameshifting site required for producing RdRp was identified as GUUUAGC with UAG stop codon and the skipped nucleotide U. Phylogenetic trees based on RdRp and Hsp70h show that TcCV1 is a novel member of the genus Closterovirus, forming a subclade with a group of known closteroviruses, including mint virus 1 and carnation necrotic fleck virus. The genome sequence of TcCV1 may be useful for studying the genome evolution of closteroviruses. Keywords: Thesium chinense closterovirus 1; Closterovirus; Closteroviridae; Thesium chinense.


Asunto(s)
Closteroviridae , Closterovirus , Aminoácidos/genética , Closteroviridae/genética , Closterovirus/genética , Codón de Terminación , Genoma Viral , Proteínas HSP70 de Choque Térmico/genética , Nucleótidos , Filogenia , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética
18.
Mol Plant Microbe Interact ; 34(11): 1316-1319, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34289713

RESUMEN

The soilborne filamentous fungus Fusarium oxysporum causes devastating diseases of many cultivated plant species. F. oxysporum f. sp. raphani and f. sp. rapae are two of four formae speciales that are pathogenic to Brassicaceae plants. Here, we present high-quality genome sequences of F. oxysporum f. sp. raphani strain Tf1262 and F. oxysporum f. sp. rapae strain Tf1208 that were isolated from radish (Raphanus sativus) and turnip (Brassica rapa var. rapa), respectively. These genome resources should facilitate in-depth investigation of interactions between F. oxysporum and Brassicaceae plants, and enable comparative genomics of the F. oxysporum species complex to uncover how pathogenicity evolved within F. oxysporum.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Brassicaceae , Fusarium , Fusarium/genética , Genoma Fúngico , Enfermedades de las Plantas
19.
Environ Microbiol ; 23(10): 6004-6018, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33780109

RESUMEN

Members of the Colletotrichum gloeosporioides species complex are causal agents of anthracnose in many commercially important plants. Closely related strains have different levels of pathogenicity on hosts despite their close phylogenetic relationship. To gain insight into the genetics underlying these differences, we generated and annotated whole-genome assemblies of multiple isolates of C. fructicola (Cf) and C. siamense (Cs), as well as three previously unsequenced species, C. aenigma (Ca), C. tropicale and C. viniferum with different pathogenicity on strawberry. Based on comparative genomics, we identified accessory regions with a high degree of conservation in strawberry-pathogenic Cf, Cs and Ca strains. These regions encode homologs of pathogenicity-related genes known as effectors, organized in syntenic gene clusters, with copy number variations in different strains of Cf, Cs and Ca. Analysis of highly contiguous assemblies of Cf, Cs and Ca revealed the association of related accessory effector gene clusters with telomeres and repeat-rich chromosomes and provided evidence of exchange between these two genomic compartments. In addition, expression analysis indicated that orthologues in syntenic gene clusters showed a tendency for correlated gene expression during infection. These data provide insight into mechanisms by which Colletotrichum genomes evolve, acquire and organize effectors.


Asunto(s)
Colletotrichum , Colletotrichum/genética , Variaciones en el Número de Copia de ADN , Familia de Multigenes , Filogenia , Enfermedades de las Plantas , Telómero/genética
20.
Development ; 145(14)2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29950390

RESUMEN

The haustorium in parasitic plants is an organ specialized for invasion and nutrient uptake from host plant tissues. Despite its importance, the developmental processes of haustoria are mostly unknown. To understand the dynamics of cell fate change and cellular lineage during haustorium development, we performed live imaging-based marker expression analysis and cell-lineage tracing during haustorium formation in the model facultative root parasite Phtheirospermum japonicum Our live-imaging analysis revealed that haustorium formation was associated with induction of simultaneous cell division in multiple cellular layers, such as epidermis, cortex and endodermis. In addition, we found that procambium-like cells, monitored by cell type-specific markers, emerged within the central region of the haustorium before xylem connection to the host plant. Our clonal analysis of cell lineages showed that cells in multiple cellular layers differentiated into procambium-like cells, whereas epidermal cells eventually transitioned into specialized cells interfacing with the host plant. Thus, our data provide a cell fate transition map during de novo haustorium organogenesis in parasitic plants.


Asunto(s)
Cámbium , Modelos Biológicos , Orobanchaceae , Epidermis de la Planta , Xilema , Cámbium/citología , Cámbium/embriología , Orobanchaceae/citología , Orobanchaceae/embriología , Epidermis de la Planta/citología , Epidermis de la Planta/embriología , Xilema/citología , Xilema/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA