Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Appl Environ Microbiol ; 89(10): e0033123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37791775

RESUMEN

Nucleic acid-based assays, such as polymerase chain reaction (PCR), that amplify and detect organism-specific genome sequences are a standard method for infectious disease surveillance. However, challenges arise for virus surveillance because of their genetic diversity. Here, we calculated the variability of nucleotides within the genomes of 10 human viral species in silico and found that endemic viruses exhibit a high percentage of variable nucleotides (e.g., 51.4% for norovirus genogroup II). This genetic diversity led to the variable probability of detection of PCR assays (the proportion of viral sequences that contain the assay's target sequences divided by the total number of viral sequences). We then experimentally confirmed that the probability of the target sequence detection is indicative of the number of mismatches between PCR assays and norovirus genomes. Next, we developed a degenerate PCR assay that detects 97% of known norovirus genogroup II genome sequences and recognized norovirus in eight clinical samples. By contrast, previously developed assays with 31% and 16% probability of detection had 1.1 and 2.5 mismatches on average, respectively, which negatively impacted RNA quantification. In addition, the two PCR assays with a lower probability of detection also resulted in false negatives for wastewater-based epidemiology. Our findings suggest that the probability of detection serves as a simple metric for evaluating nucleic acid-based assays for genetically diverse virus surveillance.IMPORTANCENucleic acid-based assays, such as polymerase chain reaction (PCR), that amplify and detect organism-specific genome sequences are employed widely as a standard method for infectious disease surveillance. However, challenges arise for virus surveillance because of the rapid evolution and genetic variation of viruses. The study analyzed clinical and wastewater samples using multiple PCR assays and found significant performance variation among the PCR assays for genetically diverse norovirus surveillance. This finding suggests that some PCR assays may miss detecting certain virus strains, leading to a compromise in detection sensitivity. To address this issue, we propose a metric called the probability of detection, which can be simply calculated in silico using a code developed in this study, to evaluate nucleic acid-based assays for genetically diverse virus surveillance. This new approach can help improve the sensitivity and accuracy of virus detection, which is crucial for effective infectious disease surveillance and control.


Asunto(s)
Enfermedades Transmisibles , Norovirus , Humanos , Norovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ARN Viral/genética , Nucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Environ Sci Technol ; 57(47): 18690-18699, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36946773

RESUMEN

The kinetics of coxsackievirus serotype B5 (CVB5) inactivation with free chlorine is characterized over a range of pH and temperature relevant to drinking water treatment with the primary goal of selecting experimental conditions used for assessing inactivation mechanisms. The inactivation kinetics identified in our study is similar to or slower than experimental data reported in the literature and thus provides a conservative representation of the kinetics of CVB5 inactivation for free chlorine that could be useful in developing future regulations for waterborne viral pathogens including adequate disinfection treatment for CVB5. Untreated and free chlorine-treated viruses, and host cells synchronized-infected with these viruses, are analyzed by a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method with the goal of quantitatively investigating the effect of free chlorine exposure on viral genome integrity, attachment to host cell, and viral genome replication. The inactivation kinetics observed results from a combination of hindering virus attachment to the host cell, inhibition of one or more subsequent steps of the replication cycle, and possibly genome damage.


Asunto(s)
Desinfectantes , Purificación del Agua , Cloro/farmacología , Desinfectantes/farmacología , Inactivación de Virus , Enterovirus Humano B , Desinfección/métodos , Purificación del Agua/métodos , Cinética
3.
Appl Environ Microbiol ; 88(9): e0224721, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35465682

RESUMEN

Proper disinfection of harvested food and water is critical to minimize infectious disease. Grape seed extract (GSE), a commonly used health supplement, is a mixture of plant-derived polyphenols. Polyphenols possess antimicrobial and antifungal properties, but antiviral effects are not well-known. Here we show that GSE outperformed chemical disinfectants (e.g., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. GSE induced virus aggregation, a process that correlated with a decrease in virus titers. This aggregation and disinfection were not reversible. Molecular docking simulations indicate that polyphenols potentially formed hydrogen bonds and strong hydrophobic interactions with specific residues in viral capsid proteins. Together, these data suggest that polyphenols physically associate with viral capsid proteins to aggregate viruses as a means to inhibit virus entry into the host cell. Plant-based polyphenols like GSE are an attractive alternative to chemical disinfectants to remove infectious viruses from water or food. IMPORTANCE Human noroviruses are major food- and waterborne pathogens, causing approximately 20% of all cases of acute gastroenteritis cases in developing and developed countries. Proper sanitation or disinfection are critical strategies to minimize human norovirus-caused disease until a reliable vaccine is created. Grape seed extract (GSE) is a mixture of plant-derived polyphenols used as a health supplement. Polyphenols are known for antimicrobial, antifungal, and antibiofilm activities, but antiviral effects are not well-known. In studies presented here, plant-derived polyphenols outperformed chemical disinfectants (i.e., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. Based on data from molecular assays and molecular docking simulations, the current model is that the polyphenols in GSE bind to the Tulane virus capsid, an event that triggers virion aggregation. It is thought that this aggregation prevents Tulane virus from entering host cells.


Asunto(s)
Desinfectantes , Extracto de Semillas de Uva , Norovirus , Antifúngicos/farmacología , Antivirales/farmacología , Proteínas de la Cápside , Cloro/farmacología , Desinfectantes/farmacología , Extracto de Semillas de Uva/farmacología , Humanos , Simulación del Acoplamiento Molecular , Ácido Peracético/farmacología , Polifenoles/farmacología , Inactivación de Virus , Agua/farmacología
4.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709728

RESUMEN

We determined the disinfection efficacy and inactivation mechanisms of peracetic acid (PAA)-based sanitizer using pH values relevant for vegetable sanitation against rotavirus (RV) and Tulane virus (TV; a human norovirus surrogate). TV was significantly more resistant to PAA disinfection than RV: for a 2-log10 reduction of virus titer, RV required 1 mg/liter PAA for 3.5 min of exposure, while TV required 10 mg/liter PAA for 30 min. The higher resistance of TV can be explained, in part, by significantly more aggregation of TV in PAA solutions. The PAA mechanisms of virus inactivation were explored by quantifying (i) viral genome integrity and replication using reverse transcription-quantitative PCR (RT-qPCR) and (ii) virus-host receptor interactions using a cell-free binding assay with porcine gastric mucin conjugated with magnetic beads (PGM-MBs). We observed that PAA induced damage to both RV and TV genomes and also decreased virus-receptor interactions, with the latter suggesting that PAA damages viral proteins important for binding its host cell receptors. Importantly, the levels of genome-versus-protein damage induced by PAA were different for each virus. PAA inactivation correlated with higher levels of RV genome damage than of RV-receptor interactions. For PAA-treated TV, the opposite trends were observed. Thus, PAA inactivates each of these viruses via different molecular mechanisms. The findings presented here potentially contribute to the design of a robust sanitation strategy for RV and TV using PAA to prevent foodborne disease.IMPORTANCE In this study, we examined the inactivation mechanisms of peracetic acid (PAA), a sanitizer commonly used for postharvest vegetable washing, for two enteric viruses: Tulane virus (TV) as a human norovirus surrogate and rotavirus (RV). PAA disinfection mechanisms for RV were mainly due to genome damage. In contrast, PAA disinfection in TV was due to damage of the proteins important for binding to its host receptor. We also observed that PAA triggered aggregation of TV to a much greater extent than RV. These studies demonstrate that different viruses are inactivated via different PAA mechanisms. This information is important for designing an optimal sanitation practice for postharvest vegetable washing to minimize foodborne viral diseases.


Asunto(s)
Caliciviridae/efectos de los fármacos , Desinfectantes/farmacología , Farmacorresistencia Viral/fisiología , Ácido Peracético/farmacología , Rotavirus/efectos de los fármacos , Caliciviridae/fisiología , Desinfección , Inactivación Metabólica , Rotavirus/fisiología
5.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31811032

RESUMEN

Enteric viruses are shed in fecal material by humans and other animals and are common contaminants in wastewater and surface water. Wastewater treatment plants often disinfect this effluent with low-pressure and medium-pressure UV lamps, which emit 254-nm and 220- to 280-nm irradiation, respectively. It is not known whether this treatment is efficacious against enteric viruses or how such treatments may inactivate these enteric viruses. This study examined UV disinfection for two enteric viruses: rotavirus (RV) (strain OSU with double-stranded RNA and a three-layer capsid) and Tulane virus (TV) (a cultivable surrogate for human norovirus with single-stranded RNA and a single-layer capsid). Viruses were treated with UV irradiation at 220 or 254 nm under conditions relevant to wastewater stabilization ponds, whose water is often used for irrigation. TV was susceptible to 220- or 254-nm UV at similar levels. It appears that UV irradiation inactivated TV by mutagenizing both its genome and capsid binding proteins. RV was more susceptible to UV at 220 nm than to UV at 254 nm. UV irradiation of RV at either 220 or 254 nm resulted in a virus that retained its ability to bind to its host cell receptor. After 220-nm treatment, the VP7 segment of the RV genome could not be amplified by PCR, suggesting that this treatment mutagenized the viral genome. However, this correlation was not observed when UV at 254 nm was used. Thus, RV and TV, with different genome and capsid contents, are targeted by UV irradiation in different ways.IMPORTANCE UV irradiation is becoming common for disinfection in water treatment plants, but little is known about the effectiveness of this treatment for enteric RNA viruses. Here, we observed that 220-nm UV irradiation was efficacious against rotavirus (RV) and Tulane virus (TV). UV irradiation at 254 nm inactivated TV to a greater extent than RV. Additional assays showed that UV irradiation compromised different portions of the RV and TV life cycles. UV irradiation decreased the binding of TV to its host receptor and mutagenized the TV genome. UV irradiation at 220 nm appeared to allow RV-host receptor interaction but halted RV genome replication. These findings provide knowledge about the disinfection of waterborne viruses, information that is important for the safe reuse or release of treated wastewater.


Asunto(s)
Caliciviridae/efectos de la radiación , Desinfección , Rotavirus/efectos de la radiación , Rayos Ultravioleta , Virión/efectos de la radiación , Inactivación de Virus , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/instrumentación , Purificación del Agua/instrumentación
6.
Risk Anal ; 40(4): 741-757, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31742761

RESUMEN

Enteric viruses are often detected in water used for crop irrigation. One concern is foodborne viral disease via the consumption of fresh produce irrigated with virus-contaminated water. Although the food industry routinely uses chemical sanitizers to disinfect post-harvest fresh produce, it remains unknown how sanitizer and fresh produce properties affect the risk of viral illness through fresh produce consumption. A quantitative microbial risk assessment model was conducted to estimate (i) the health risks associated with consumption of rotavirus (RV)-contaminated fresh produce with different surface properties (endive and kale) and (ii) how risks changed when using peracetic acid (PAA) or a surfactant-based sanitizer. The modeling results showed that the annual disease burden depended on the combination of sanitizer and vegetable type when vegetables were irrigated with RV-contaminated water. Global sensitivity analyses revealed that the most influential factors in the disease burden were RV concentration in irrigation water and postharvest disinfection efficacy. A postharvest disinfection efficacy of higher than 99% (2-log10 ) was needed to decrease the disease burden below the World Health Organization (WHO) threshold, even in scenarios with low RV concentrations in irrigation water (i.e., river water). All scenarios tested here with at least 99.9% (3-log10 ) disinfection efficacy had a disease burden lower than the WHO threshold, except for the endive treated with PAA. The disinfection efficacy for the endive treated with PAA was only about 80%, leading to a disease burden 100 times higher than the WHO threshold. These findings should be considered and incorporated into future models for estimating foodborne viral illness risks.


Asunto(s)
Microbiología de Alimentos , Medición de Riesgo , Infecciones por Rotavirus/epidemiología , Verduras/química , Riego Agrícola , Desinfección , Humanos , Propiedades de Superficie , Verduras/virología , Microbiología del Agua
7.
J Biol Chem ; 293(5): 1745-1755, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222334

RESUMEN

Interferon α (IFNα) is important for antiviral and anticancer defenses. However, overproduction is associated with autoimmune disorders. Thus, the cell must precisely up- and down-regulate IFNα to achieve immune system homeostasis. The cellular FLICE-like inhibitory protein (cFLIP) is reported to inhibit IFNα production. However, the mechanism for this antagonism remained unknown. The goal here was to identify this mechanism. Here we examined the signal transduction events that occur during TLR9-induced IRF7 activation. The cFLIP long isoform (cFLIPL) inhibited the expression of IRF7-controlled natural or synthetic genes in several cell lines, including those with abundant IRF7 protein levels (e.g. dendritic cells). cFLIPL inhibited IRF7 phosphorylation; however, cFLIPL-IRF7 interactions were not detectable, implying that cFLIPL acted upstream of IRF7 dimerization. Interestingly, cFLIPL co-immunoprecipitated with IKKα, and these interactions correlated with a loss of IKKα-IRF7 interactions. Thus, cFLIP appears to bind to IKKα to prevent IKKα from phosphorylating and activating IRF7. To the best of our knowledge, this is the first report of a cellular protein that uses this approach to inhibit IRF7 activation. Perhaps this cFLIP property could be engineered to minimize the deleterious effects of IFNα expression that occur during certain autoimmune disorders.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Regulación de la Expresión Génica , Quinasa I-kappa B/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Interferón-alfa/biosíntesis , Multimerización de Proteína , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Células HEK293 , Células HeLa , Humanos , Quinasa I-kappa B/genética , Factor 7 Regulador del Interferón/genética , Interferón-alfa/genética , Células THP-1
8.
Environ Sci Technol ; 53(20): 11999-12006, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31517478

RESUMEN

To fill the knowledge gap on how effective free chlorine is against viral-contaminated produce, we inoculated the surfaces of outdoor- or greenhouse-grown kale and mustard with Rotavirus (RV) or a human norovirus surrogate (Tulane virus, TV) and then disinfected the leaves with free chlorine. Disinfection efficacies for RV strain OSU and Wa were approximately 1-log10 higher when attached to mustard than to kale. Similar disinfection efficacies were observed for TV attached to mustard or kale. When examining TV and RV OSU in suspension (not attached to leaf surfaces), TV was more resistant to free chlorine than RV OSU. Inactivation efficacies were higher for these viruses in suspension versus viruses attached to produce the surface. We also found that free chlorine damaged viral capsids, allowing free chlorine access to viral RNA to damage viral genomes. Exposure to free chlorine at 1.7 ppm over 1 min caused VP8* of RV OSU to lose its ability to bind to its host receptors. TV lost its ability to bind to its receptor only after exposure to free chlorine at 29 ppm over 1 min. Thus, to reduce foodborne viral infections, it is important to consider the differences in virus' reactivity and inactivation mechanisms with free chlorine.


Asunto(s)
Norovirus , Rotavirus , Cloro , Desinfección , Humanos , Hojas de la Planta , Inactivación de Virus
9.
J Gen Virol ; 99(2): 246-252, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29393023

RESUMEN

Molluscum contagiosum virus (MCV) causes persistent, benign skin neoplasm in children and adults. MCV is refractive to growth in standard tissue culture and there is no relevant animal model of infection. Here we investigated whether another poxvirus (vaccinia virus; VACV) could be used to examine MCV immunoevasion protein properties in vivo. The MCV MC159L or MC160L genes, which encode NF-κB antagonists, were inserted into an attenuated VACV lacking an NF-κB antagonist (vΔA49), creating vMC159 and vMC160. vMC160 slightly increased vΔA49 virulence in the intranasal and intradermal routes of inoculation. vMC159 infection was less virulent than vΔA49 in both inoculation routes. vMC159-infected ear pinnae did not form lesions, but virus replication still occurred. Thus, the lack of lesions was not due to abortive virus replication. This system provides a new approach to examine MCV immunoevasion proteins within the context of a complete and complex immune system.


Asunto(s)
Virus del Molusco Contagioso/inmunología , FN-kappa B/antagonistas & inhibidores , Virus Vaccinia/patogenicidad , Proteínas Virales/administración & dosificación , Administración Intranasal , Animales , Niño , Femenino , Humanos , Inyecciones Intradérmicas , Ratones Endogámicos BALB C , Virus del Molusco Contagioso/genética , Proteínas Virales/inmunología , Virulencia
10.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28515292

RESUMEN

Molluscum contagiosum virus (MCV) is a dermatotropic poxvirus that causes benign skin lesions. MCV lesions persist because of virally encoded immune evasion molecules that inhibit antiviral responses. The MCV MC159 protein suppresses NF-κB activation, a powerful antiviral response, via interactions with the NF-κB essential modulator (NEMO) subunit of the IκB kinase (IKK) complex. Binding of MC159 to NEMO does not disrupt the IKK complex, implying that MC159 prevents IKK activation via an as-yet-unidentified strategy. Here, we demonstrated that MC159 inhibited NEMO polyubiquitination, a posttranslational modification required for IKK and downstream NF-κB activation. Because MCV cannot be propagated in cell culture, MC159 was expressed independent of infection or during a surrogate vaccinia virus infection to identify how MC159 prevented polyubiquitination. Cellular inhibitor of apoptosis protein 1 (cIAP1) is a cellular E3 ligase that ubiquitinates NEMO. Mutational analyses revealed that MC159 and cIAP1 each bind to the same NEMO region, suggesting that MC159 may competitively inhibit cIAP1-NEMO interactions. Indeed, MC159 prevented cIAP1-NEMO interactions. MC159 also diminished cIAP1-mediated NEMO polyubiquitination and cIAP1-induced NF-κB activation. These data suggest that MC159 competitively binds to NEMO to prevent cIAP1-induced NEMO polyubiquitination. To our knowledge, this is the first report of a viral protein disrupting NEMO-cIAP1 interactions to strategically suppress IKK activation. All viruses must antagonize antiviral signaling events for survival. We hypothesize that MC159 inhibits NEMO polyubiquitination as a clever strategy to manipulate the host cell environment to the benefit of the virus.IMPORTANCE Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes persistent skin neoplasms. The persistence of MCV has been attributed to viral downregulation of host cell immune responses such as NF-κB activation. We show here that the MCV MC159 protein interacts with the NEMO subunit of the IKK complex to prevent NEMO interactions with the cIAP1 E3 ubiquitin ligase. This interaction correlates with a dampening of cIAP1 to polyubiquitinate NEMO and to activate NF-κB. This inhibition of cIAP1-NEMO interactions is a new viral strategy to minimize IKK activation and to control NEMO polyubiquitination. This research provides new insights into mechanisms that persistent viruses may use to cause long-term infection of host cells.


Asunto(s)
Interacciones Huésped-Patógeno , Quinasa I-kappa B/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Virus del Molusco Contagioso/patogenicidad , Procesamiento Proteico-Postraduccional , Ubiquitinación , Proteínas Virales/metabolismo , Animales , Línea Celular , Humanos , Ratones , Unión Proteica
11.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28904196

RESUMEN

Apoptosis is an important antiviral host defense mechanism. Here we report the identification of a novel apoptosis inhibitor encoded by the vaccinia virus (VACV) M1L gene. M1L is absent in the attenuated modified vaccinia virus Ankara (MVA) strain of VACV, a strain that stimulates apoptosis in several types of immune cells. M1 expression increased the viability of MVA-infected THP-1 and Jurkat cells and reduced several biochemical hallmarks of apoptosis, such as PARP-1 and procaspase-3 cleavage. Furthermore, ectopic M1L expression decreased staurosporine-induced (intrinsic) apoptosis in HeLa cells. We then identified the molecular basis for M1 inhibitory function. M1 allowed mitochondrial depolarization but blocked procaspase-9 processing, suggesting that M1 targeted the apoptosome. In support of this model, we found that M1 promoted survival in Saccharomyces cerevisiae overexpressing human Apaf-1 and procaspase-9, critical components of the apoptosome, or overexpressing only conformationally active caspase-9. In mammalian cells, M1 coimmunoprecipitated with Apaf-1-procaspase-9 complexes. The current model is that M1 associates with and allows the formation of the apoptosome but prevents apoptotic functions of the apoptosome. The M1 protein features 14 predicted ankyrin (ANK) repeat domains, and M1 is the first ANK-containing protein reported to use this inhibitory strategy. Since ANK-containing proteins are encoded by many large DNA viruses and found in all domains of life, studies of M1 may lead to a better understanding of the roles of ANK proteins in virus-host interactions.IMPORTANCE Apoptosis selectively eliminates dangerous cells such as virus-infected cells. Poxviruses express apoptosis antagonists to neutralize this antiviral host defense. The vaccinia virus (VACV) M1 ankyrin (ANK) protein, a protein with no previously ascribed function, inhibits apoptosis. M1 interacts with the apoptosome and prevents procaspase-9 processing as well as downstream procaspase-3 cleavage in several cell types and under multiple conditions. M1 is the first poxviral protein reported to associate with and prevent the function of the apoptosome, giving a more detailed picture of the threats VACV encounters during infection. Dysregulation of apoptosis is associated with several human diseases. One potential treatment of apoptosis-related diseases is through the use of designed ANK repeat proteins (DARPins), similar to M1, as caspase inhibitors. Thus, the study of the novel antiapoptosis effects of M1 via apoptosome association will be helpful for understanding how to control apoptosis using either natural or synthetic molecules.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Apoptosomas/metabolismo , Virus Vaccinia/genética , Animales , Repetición de Anquirina , Apoptosis/efectos de los fármacos , Factor Apoptótico 1 Activador de Proteasas/genética , Caspasa 9/genética , Caspasa 9/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Saccharomyces cerevisiae/genética , Estaurosporina/farmacología , Virus Vaccinia/efectos de los fármacos , Virus Vaccinia/metabolismo
12.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490586

RESUMEN

All viruses strategically alter the antiviral immune response to their benefit. The vaccinia virus (VACV) K1 protein has multiple immunomodulatory effects in tissue culture models of infection, including NF-κB antagonism. However, the effect of K1 during animal infection is poorly understood. We determined that a K1L-less vaccinia virus (vΔK1L) was less pathogenic than wild-type VACV in intranasal and intradermal models of infection. Decreased pathogenicity was correlated with diminished virus replication in intranasally infected mice. However, in intradermally inoculated ears, vΔK1L replicated to levels nearly identical to those of VACV, implying that the decreased immune response to vΔK1L infection, not virus replication, dictated lesion size. Several lines of evidence support this theory. First, vΔK1L induced slightly less edema than vK1L, as revealed by histopathology and noninvasive quantitative ultrasound technology (QUS). Second, infiltrating immune cell populations were decreased in vΔK1L-infected ears. Third, cytokine and chemokine gene expression was decreased in vΔK1L-infected ears. While these results identified the biological basis for smaller lesions, they remained puzzling; because K1 antagonizes NF-κB in vitro, antiviral gene expression was expected to be higher during vΔK1L infection. Despite these diminished innate immune responses, vΔK1L vaccination induced a protective VACV-specific CD8+ T cell response and protected against a lethal VACV challenge. Thus, vΔK1L is the first vaccinia virus construct reported that caused a muted innate immune gene expression profile and decreased immune cell infiltration in an intradermal model of infection yet still elicited protective immunity.IMPORTANCE The vaccinia virus (VACV) K1 protein inhibits NF-κB activation among its other antagonistic functions. A virus lacking K1 (vΔK1L) was predicted to be less pathogenic because it would trigger a more robust antiviral immune response than VACV. Indeed, vΔK1L was less pathogenic in intradermally infected mouse ear pinnae. However, vΔK1L infection unexpectedly elicited dramatically reduced infiltration of innate immune cells into ears. This was likely due to decreased expression of cytokine and chemokine genes in vΔK1L-infected ears. As such, our finding contradicted observations from cell culture systems. Interestingly, vΔK1L conferred protective immunity against lethal VACV challenge. This suggests that the muted immune response triggered during vΔK1L infection remained sufficient to mount an effective protective response. Our results highlight the complexity and unpredictable nature of virus-host interactions, a relationship that must be understood to better comprehend virus pathogenesis or to manipulate viruses for use as vaccines.


Asunto(s)
Eliminación de Gen , Inmunidad Innata , Virus Vaccinia/patogenicidad , Vaccinia/patología , Proteínas Virales/genética , Factores de Virulencia/genética , Animales , Modelos Animales de Enfermedad , Ratones , Vaccinia/virología , Virus Vaccinia/genética , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo
13.
Environ Sci Technol ; 52(6): 3652-3659, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29480719

RESUMEN

Polychromatic ultraviolet (UV) light with bandwidth of 20 nm and peak emission centered at 224, 254, or 280 nm (UV224, UV254, and UV280, respectively) were used to inactivate human adenovirus type 2 (HAdV-2). Quantitative polymerase chain reaction (qPCR) and reverse transcriptase qPCR assays were used to elucidate the step in the HAdV-2 replication cycle that was disrupted after UV exposure. UV treatment at any of the wavelengths analyzed did not inhibit association of HAdV-2 to the host cells even after exposure to a fluence (UV dose) that would produce a virus inactivation efficiency, measured by plaque assay, greater than 99.99%. In contrast, UV irradiation at all three peak emissions disrupted early E1A gene transcription and viral DNA replication, but different mechanisms appeared to be dominating such disruptions. UV224 seemed to have little effect on the integrity of the viral genome but produced a structural transformation of the viral capsid that may inhibit the delivery of viral genome into the host cell nucleus. On the other hand, UV254 and UV280 did not affect the integrity of the viral capsid, but the mutations they produced on the viral genome might cause the inhibition of the early gene transcription and DNA replication after the viral genome successfully translocated into the host cell nucleus.


Asunto(s)
Infecciones por Adenoviridae , Adenovirus Humanos , Adenoviridae , Replicación del ADN , ADN Viral , Humanos , Rayos Ultravioleta , Replicación Viral
14.
Environ Sci Technol ; 52(10): 5682-5690, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29671592

RESUMEN

Two rotavirus (RV) strains (sialidase-resistant Wa and sialidase-sensitive OSU) were irradiated with simulated solar UVA and visible light in sensitizer-free phosphate buffered solution (PBS) (lacking exogenous reactive oxygen species (ROS)) or secondary effluent wastewater (producing ROS). Although light attenuated for up to 15% through the secondary effluent wastewater (SEW), the inactivation efficacies increased by 0.7 log10 for Wa and 2 log10 for OSU compared to those in sensitizer-free phosphate buffered solution (PBS) after 4 h of irradiation. A binding assay using magnetic beads coated with porcine gastric mucin containing receptors for rotaviruses (PGM-MB) was developed to determine if inactivation influenced RV binding to its receptors. The linear correlation between the reduction in infectivity and the reduction in binding after irradiation in sensitizer-free solution suggests that the main mechanism of RV inactivation in the absence of exogenous ROS was due to damage to VP8*, the RV protein that binds to host cell receptors. For a given reduction in infectivity, greater damage in VP8* was observed with sialidase-resistant Wa compared to sialidase-sensitive OSU. The lack of correlation between the reduction in infectivity and the reduction in binding, in SEW, led us to include RNase treatment before the binding step to quantify virions with intact protein capsids and exclude virions that can bind to the receptors but have their capsid permeable after irradiation. This assay showed a linear correlation between the reduction in RV infectivity and RV-receptor interactions, suggesting that RV inactivation in SEW was due to compromised capsid proteins other than the VP8* protein. Thus, rotavirus inactivation by UVA and visible light irradiation depends on both the formation of ROS and the stability of viral proteins.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Animales , Proteínas de la Cápside , Humanos , Luz , Porcinos , Virión
15.
J Immunol ; 197(3): 923-33, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342840

RESUMEN

Type I IFN induction is critical for antiviral and anticancer defenses. Proper downregulation of type I IFN is equally important to avoid deleterious imbalances in the immune response. The cellular FLIP long isoform protein (cFLIPL) controls type I IFN production, but opposing publications show it as either an inhibitor or inducer of type I IFN synthesis. Regardless, the mechanistic basis for cFLIPL regulation is unknown. Because cFLIPL is important in immune cell development and proliferation, and is a target for cancer therapies, it is important to identify how cFLIPL regulates type I IFN production. Data in this study show that cFLIPL inhibits IFN regulatory factor 3 (IRF3), a transcription factor central for IFN-ß and IFN-stimulated gene expression. This inhibition occurs during virus infection, cellular exposure to polyinosinic-polycytidylic acid, or TBK1 overexpression. This inhibition is independent of capase-8 activity. cFLIPL binds to IRF3 and disrupts IRF3 interaction with its IFN-ß promoter and its coactivator protein (CREB-binding protein). Mutational analyses reveal that cFLIPL nuclear localization is necessary and sufficient for inhibitory function. This suggests that nuclear cFLIPL prevents IRF3 enhanceosome formation. Unlike other cellular IRF3 inhibitors, cFLIPL did not degrade or dephosphorylate IRF3. Thus, cFLIPL represents a different cellular strategy to inhibit type I IFN production. This new cFLIPL function must be considered to accurately understand how cFLIPL affects immune system development and regulation.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Fragmentos de Péptidos/metabolismo , Sialoglicoproteínas/metabolismo , Línea Celular , Humanos , Immunoblotting , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Transducción de Señal , Transcripción Genética
16.
PLoS Pathog ; 11(11): e1005255, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26545119

RESUMEN

KSHV is a DNA tumor virus that causes Kaposi's sarcoma. Upon KSHV infection, only a limited number of latent genes are expressed. We know that KSHV infection regulates host gene expression, and hypothesized that latent genes also modulate the expression of host miRNAs. Aberrant miRNA expression contributes to the development of many types of cancer. Array-based miRNA profiling revealed that all six miRNAs of the oncogenic miR-17-92 cluster are up-regulated in KSHV infected endothelial cells. Among candidate KSHV latent genes, we found that vFLIP and vCyclin were shown to activate the miR-17-92 promoter, using luciferase assay and western blot analysis. The miR-17-92 cluster was previously shown to target TGF-ß signaling. We demonstrate that vFLIP and vCyclin induce the expression of the miR-17-92 cluster to strongly inhibit the TGF-ß signaling pathway by down-regulating SMAD2. Moreover, TGF-ß activity and SMAD2 expression were fully restored when antagomirs (inhibitors) of miR-17-92 cluster were transfected into cells expressing either vFLIP or vCyclin. In addition, we utilized viral genetics to produce vFLIP or vCyclin knock-out viruses, and studied the effects in infected TIVE cells. Infection with wildtype KSHV abolished expression of SMAD2 protein in these endothelial cells. While single-knockout mutants still showed a marked reduction in SMAD2 expression, TIVE cells infected by a double-knockout mutant virus were fully restored for SMAD2 expression, compared to non-infected TIVE cells. Expression of either vFLIP or vCycIin was sufficient to downregulate SMAD2. In summary, our data demonstrate that vFLIP and vCyclin induce the oncogenic miR-17-92 cluster in endothelial cells and thereby interfere with the TGF-ß signaling pathway. Manipulation of the TGF-ß pathway via host miRNAs represents a novel mechanism that may be important for KSHV tumorigenesis and angiogenesis, a hallmark of KS.


Asunto(s)
Herpesvirus Humano 8 , MicroARNs/genética , Sarcoma de Kaposi/virología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular , Regulación hacia Abajo , Células Endoteliales/virología , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/virología , ARN Largo no Codificante , Sarcoma de Kaposi/irrigación sanguínea
17.
Proc Natl Acad Sci U S A ; 111(2): E265-72, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379396

RESUMEN

Apoptosis, NF-κB activation, and IRF3 activation are a triad of intrinsic immune responses that play crucial roles in the pathogenesis of infectious diseases, cancer, and autoimmunity. FLIPs are a family of viral and cellular proteins initially found to inhibit apoptosis and more recently to either up- or down-regulate NF-κB. As such, a broad role for FLIPs in disease regulation is postulated, but exactly how a FLIP performs such multifunctional roles remains to be established. Here we examine FLIPs (MC159 and MC160) encoded by the molluscum contagiosum virus, a dermatotropic poxvirus causing skin infections common in children and immunocompromised individuals, to better understand their roles in viral pathogenesis. While studying their molecular mechanisms responsible for NF-κB inhibition, we discovered that each protein inhibited IRF3-controlled luciferase activity, identifying a unique function for FLIPs. MC159 and MC160 each inhibited TBK1 phosphorylation, confirming this unique function. Surprisingly, MC159 coimmunoprecipitated with TBK1 and IKKε but MC160 did not, suggesting that these homologs use distinct molecular mechanisms to inhibit IRF3 activation. Equally surprising was the finding that the FLIP regions necessary for TBK1 inhibition were distinct from those MC159 or MC160 regions previously defined to inhibit NF-κB or apoptosis. These data reveal previously unappreciated complexities of FLIPs, and that subtle differences within the conserved regions of FLIPs possess distinct molecular and structural fingerprints that define crucial differences in biological activities. A future comparison of mechanistic differences between viral FLIP proteins can provide new means of precisely manipulating distinct aspects of intrinsic immune responses.


Asunto(s)
Interferón beta/antagonistas & inhibidores , Molusco Contagioso/inmunología , Virus del Molusco Contagioso/genética , Proteínas Virales/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Quinasa I-kappa B/metabolismo , Immunoblotting , Inmunoprecipitación , Luciferasas/antagonistas & inhibidores , Virus del Molusco Contagioso/inmunología , FN-kappa B/antagonistas & inhibidores , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/farmacología
18.
J Gen Virol ; 97(10): 2691-2702, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27503790

RESUMEN

The vaccinia virus (VACV) K1 protein inhibits dsRNA-dependent protein kinase (PKR) activation. A consequence of this function is that K1 inhibits PKR-induced NF-κB activation during VACV infection. However, transient expression of K1 also inhibits Toll-like receptor (TLR)-induced NF-κB activation. This suggests that K1 has a second NF-κB inhibitory mechanism that is PKR-independent. This possibility was explored by expressing K1 independently of infection and stimulating NF-κB under conditions that minimized or excluded PKR activation. K1 inhibited both TNF- and phorbol 12-myristate 13-acetate (PMA)-induced NF-κB activation, as detected by transcription of synthetic (e.g. luciferase) and natural (e.g. CXCL8) genes controlled by NF-κB. K1 also inhibited NF-κB activity in PKRkd cells, cells that have greatly decreased amounts of PKR. K1 no longer prevented IκBα degradation or NF-κB nuclear translocation in the absence of PKR, suggesting that K1 acted on a nuclear event. Indeed, K1 was present in the nucleus and cytoplasm of stimulated and unstimulated cells. K1 inhibited acetylation of the RelA (p65) subunit of NF-κB, a nuclear event known to be required for NF-κB activation. Moreover, p65-CBP (CREB-binding protein) interactions were blocked in the presence of K1. However, K1 did not preclude NF-κB binding to oligonucleotides containing κB-binding sites. The current interpretation of these data is that NF-κB-promoter interactions still occur in the presence of K1, but NF-κB cannot properly trigger transcriptional activation because K1 antagonizes acetylation of RelA. Thus, in comparison to all known VACV NF-κB inhibitory proteins, K1 acts at one of the most downstream events of NF-κB activation.


Asunto(s)
FN-kappa B/metabolismo , Virus Vaccinia/metabolismo , Vaccinia/metabolismo , Proteínas Virales/metabolismo , Acetilación , Repetición de Anquirina , Humanos , FN-kappa B/genética , Unión Proteica , Transducción de Señal , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Vaccinia/genética , Vaccinia/virología , Virus Vaccinia/genética , Proteínas Virales/química , Proteínas Virales/genética
19.
Appl Environ Microbiol ; 82(20): 6214-6222, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27520815

RESUMEN

The use of sanitizers is essential for produce safety. However, little is known about how sanitizer efficacy varies with respect to the chemical surface properties of produce. To answer this question, the disinfection efficacies of an oxidant-based sanitizer and a new surfactant-based sanitizer for porcine rotavirus (PRV) strain OSU were examined. PRV was attached to the leaf surfaces of two kale cultivars with high epicuticular wax contents and one cultivar of endive with a low epicuticular wax content and then treated with each sanitizer. The efficacy of the oxidant-based sanitizer correlated with leaf wax content as evidenced by the 1-log10 PRV disinfection on endive surfaces (low wax content) and 3-log10 disinfection of the cultivars with higher wax contents. In contrast, the surfactant-based sanitizer showed similar PRV disinfection efficacies (up to 3 log10) that were independent of leaf wax content. A statistical difference was observed with the disinfection efficacies of the oxidant-based sanitizer for suspended and attached PRV, while the surfactant-based sanitizer showed similar PRV disinfection efficacies. Significant reductions in the entry and replication of PRV were observed after treatment with either disinfectant. Moreover, the oxidant-based-sanitizer-treated PRV showed sialic acid-specific binding to the host cells, whereas the surfactant-based sanitizer increased the nonspecific binding of PRV to the host cells. These findings suggest that the surface properties of fresh produce may affect the efficacy of virus disinfection, implying that food sanitizers should be carefully selected for the different surface characteristics of fresh produce. IMPORTANCE: Food sanitizer efficacies are affected by the surface properties of vegetables. This study evaluated the disinfection efficacies of two food sanitizers, an oxidant-based sanitizer and a surfactant-based sanitizer, on porcine rotavirus strain OSU adhering to the leaf epicuticular surfaces of high- and low-wax-content cultivars. The disinfection efficacy of the oxidant-based sanitizer was affected by the surface properties of the vegetables, while the surfactant-based sanitizer was effective for both high- and low-wax leafy vegetable cultivars. This study suggests that the surface properties of vegetables may be an important factor that interacts with disinfection with food sanitizers of rotaviruses adhering to fresh produce.


Asunto(s)
Desinfectantes/farmacología , Desinfección/métodos , Hojas de la Planta/química , Rotavirus/efectos de los fármacos , Verduras/química , Brassica/química , Brassica/efectos de los fármacos , Brassica/virología , Microbiología de Alimentos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/virología , Rotavirus/fisiología , Propiedades de Superficie , Verduras/efectos de los fármacos , Verduras/virología
20.
Environ Sci Technol ; 50(5): 2522-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26820824

RESUMEN

Elucidating mechanisms by which pathogenic waterborne viruses become inactivated by drinking water disinfectants would facilitate the development of sensors to detect infectious viruses and novel disinfection strategies to provide safe water. Using bacteriophages as surrogates for human pathogenic viruses could assist in elucidating these mechanisms; however, an appropriate viral surrogate for human adenovirus (HAdV), a medium-sized virus with a double-stranded DNA genome, needs to be identified. Here, we characterized the inactivation kinetics of bacteriophage PR772, a member of the Tectiviridae family with many similarities in structure and replication to HAdV. The inactivation of PR772 and HAdV by free chlorine had similar kinetics that could be represented with a model previously developed for HAdV type 2 (HAdV-2). We developed and tested a quantitative assay to analyze several steps in the PR772 replication cycle to determine if both viruses being inactivated at similar rates resulted from similar replication cycle events being inhibited. Like HAdV-2, we observed that PR772 inactivated by free chlorine still attached to host cells, and viral DNA synthesis and early and late gene transcription were inhibited. Consequently, free chlorine exposure inhibited a replication cycle event that was post-binding but took place prior to early gene synthesis for both PR772 and HAdV-2.


Asunto(s)
Adenovirus Humanos/efectos de los fármacos , Bacteriófagos/efectos de los fármacos , Cloro/farmacología , Purificación del Agua/métodos , Adenovirus Humanos/fisiología , Bacteriófagos/genética , Bacteriófagos/fisiología , Desinfectantes/farmacología , Desinfección/métodos , Cinética , Reacción en Cadena de la Polimerasa/métodos , Replicación Viral/efectos de los fármacos , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA