Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(32): 36679-36687, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35930841

RESUMEN

Phosphorus pentoxide (P2O5) is investigated as an acid scavenger to remove the acidic impurities in a commercial lithium hexafluorophosphate (LiPF6) carbonate electrolyte to improve the electrochemical properties of Li metal batteries. Nuclear magnetic resonance (NMR) measurements reveal the detailed reaction mechanisms of P2O5 with the LiPF6 electrolyte and its impurities, which removes hydrogen fluoride (HF) and difluorophosphoric acid (HPO2F2) and produces phosphorus oxyfluoride (POF3), OF2P-O-PF5- anions, and ethyl difluorophosphate (C2H5OPOF2) as new electrolyte species. The P2O5-modified LiPF6 electrolyte is chemically compatible with a Li metal anode and LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode, generating a POxFy-rich solid electrolyte interphase (SEI) that leads to highly reversible Li electrodeposition, while eliminating transition metal dissolution and cathode particle cracking. The excellent electrochemical properties of the P2O5-modified LiPF6 electrolytes are demonstrated on Li||NMC622 pouch cells with 0.4 Ah capacity, 50 µm Li anode, 3 mAh cm-2 NMC622 cathode, and 3 g Ah-1 electrolyte/capacity ratio. The pouch cells can be galvanostatically cycled at C/3 for 230 cycles with 87.7% retention.

2.
J Biomater Appl ; 36(5): 803-817, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34121491

RESUMEN

In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was optimized to reach a desired mechanical stiffness. Accordingly, the concentrations of alginate and SFN to have an optimum compression modulus in the hydrogel were found to be 1.685 and 1.724% w/v, respectively. The gelation time was found to be about 10 s for all the samples. Scanning electron microscope (SEM) images showed homogeneous dispersion of the SFN in the hydrogel, mimicking the natural cartilage environment. Furthermore, water uptake capacity, degradation rate, cell cytotoxicity, and glycosaminoglycan and collagen II secretions were determined for the optimum hydrogel to support its potential as an injectable scaffold for articular cartilage defects.


Asunto(s)
Alginatos , Cartílago , Matriz Extracelular , Hidrogeles/química , Polímeros/química , Ingeniería de Tejidos/métodos , Cartílago/efectos de los fármacos , Cartílago Articular , Condrocitos/efectos de los fármacos , Colágeno/metabolismo , Matriz Extracelular/efectos de los fármacos , Fibroínas , Glicosaminoglicanos , Hidrogeles/farmacología , Polímeros/farmacología , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA