Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Neurosci ; 131(4): 390-404, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32238043

RESUMEN

Aim of the study: With the development of emergency medicine and intensive care technology, the number of people who survive with disorders of consciousness (DOC) has dramatically increased. The diagnosis and treatment of such patients have attracted much attention from the medical community. From the latest evidence-based guidelines, non-invasive brain intervention (NIBI) techniques may be valuable and promising in the diagnosis and conscious rehabilitation of DOC patients.Methods: This work reviews the studies on NIBI techniques for the assessment and intervention of DOC patients.Results: A large number of studies have explored the application of NIBI techniques in DOC patients. The NIBI techniques include transcranial magnetic stimulation, transcranial electric stimulation, music stimulation, near-infrared laser stimulation, focused shock wave therapy, low-intensity focused ultrasound pulsation and transcutaneous auricular vagus nerve stimulation.Conclusions: NIBI techniques present numerous advantages such as being painless, safe and inexpensive; having adjustable parameters and targets; and having broad development prospects in treating DOC patients.


Asunto(s)
Trastornos de la Conciencia/terapia , Tratamiento con Ondas de Choque Extracorpóreas , Humanos , Terapia por Láser , Musicoterapia , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Resultado del Tratamiento , Ultrasonografía Intervencional
2.
Chem Commun (Camb) ; 60(52): 6683-6686, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860957

RESUMEN

This study introduces boronic ester-based ROS-responsive amphiphilic copolymers for antioxidant drug delivery. Tuning the hydrophobic/hydrophilic balance optimized the size, curcumin encapsulation, ROS-triggered release, cellular uptake, and intracellular ROS scavenging. The lead P1b formulation self-assembled into stable 10 nm micelles enabling rapid ROS-triggered curcumin release and preferential cellular internalization. P1b eliminated over 90% of pathogenic intracellular ROS within 10 minutes, demonstrating a rapid antioxidant therapy.


Asunto(s)
Ácidos Borónicos , Curcumina , Ésteres , Polímeros , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Ésteres/química , Ésteres/farmacología , Humanos , Ácidos Borónicos/química , Curcumina/química , Curcumina/farmacología , Polímeros/química , Micelas , Interacciones Hidrofóbicas e Hidrofílicas , Antioxidantes/química , Antioxidantes/farmacología , Portadores de Fármacos/química , Tensoactivos/química , Tensoactivos/síntesis química , Liberación de Fármacos , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos , Estructura Molecular
3.
Int J Biol Macromol ; 260(Pt 2): 129453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253143

RESUMEN

Diabetic wound therapy presents significant challenges in the clinical environment, where persistent bleeding, disturbed inflammatory regulation, impaired cellular proliferation, and impaired tissue remodeling are major features of diabetic wound healing. However, current treatment strategies need to be considered in the context of the dynamic and complex needs of chronic wound healing. Here, multifunctional dynamic boronic acid cross-linked hydrogels were prepared by the reaction of gelatin (Gel) inoculated with 5-carboxy 3-nitrophenylboronic acid (NPBA) and Epigallocatechin gallate (EGCG) to achieve rapid gelation at pH = 7.4, EGCG could interact electrostatically with cationic antimicrobial peptides (AMP) to achieve the effective loading of AMP in the hydrogels. This hydrogel can be injected and adhered to skin defects in diabetic patients to provide a barrier and rapid hemostasis. In a high glucose microenvironment, the rapid release of AMP effectively kills bacteria, while the responsive release of EGCG eliminates reactive oxygen species (ROS) and promotes macrophage M2 polarization. In addition, the hydrogel had excellent biocompatibility and degradability properties, degraded completely after 3 days of subcutaneous injection, and was non-toxic in H&E staining of major organs and serum liver function indices in mice. This multifunctional injectable hydrogel accelerates diabetic skin wound repair and is a promising dressing for the precise treatment of diabetic wounds.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Animales , Ratones , Hidrogeles/farmacología , Antioxidantes/farmacología , Gelatina , Piel , Antiinflamatorios , Antibacterianos/farmacología
4.
ACS Macro Lett ; 13(1): 58-64, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38153092

RESUMEN

The development of drug delivery systems with real-time cargo release monitoring capabilities is imperative for optimizing nanomedicine performance. Herein, we report an innovative self-reporting drug delivery platform based on a ROS-responsive random copolymer (P1) capable of visualizing cargo release kinetics via the activation of an integrated fluorophore. P1 was synthesized by copolymerization of pinacol boronate, PEG, and naphthalimide monomers to impart ROS-sensitivity, hydrophilicity, and fluorescence signaling, respectively. Detailed characterization verified that P1 self-assembles into 11 nm micelles with 10 µg mL-1 CMC and can encapsulate hydrophobic curcumin with 79% efficiency. Fluorescence assays demonstrated H2O2-triggered disassembly and curcumin release with concurrent polymer fluorescence turn-on. Both in vitro and in vivo studies validated the real-time visualization of drug release and ROS scavenging, as well as the therapeutic effect on osteoarthritis (OA). Overall, this nanotheranostic polymeric micelle system enables quantitative monitoring of drug release kinetics for enhanced treatment optimization across oxidative stress-related diseases.


Asunto(s)
Curcumina , Osteoartritis , Humanos , Polímeros , Especies Reactivas de Oxígeno , Curcumina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Autoinforme , Peróxido de Hidrógeno , Sistemas de Liberación de Medicamentos , Micelas , Osteoartritis/tratamiento farmacológico
5.
Mater Today Bio ; 24: 100921, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38226017

RESUMEN

Utilizing complementary bioactive peptides is a promising surface engineering strategy for bone regeneration on osteogenesis. In this study, we designed block peptides, (Lysine)6-capped RGD (K6-(linker-RGD)3) and OGP (K6-linker-(YGFGG)2), which were mildly grafted onto PC/Fe-MPNs through supramolecular interactions between K6 and PC residues on the MPNs surface to form a dual peptide coating, named PC/Fe@K6-RGD/OGP. The properties of the block peptides coating, including mechanics, hydrophilicity, chemical composition, etc., were detailly characterized by various techniques (ellipsometry, quartz crystal microbalance, X-ray photoelectron spectroscopy, water contact angle, scanning electronic microscopy and atomic force microscopy). Importantly, the RGD/OGP ratio can be well adjusted, which allowed optimizing the RGD/OGP ratio to endow significantly enhanced osteogenic activity of MC3T3-E1 cells through the Wnt/ß-catenin pathway, while also promoting cell adhesion, immune regulation, inhibiting osteoclast differentiation and oxidative stress reduction. In vivo, the optimized RGD/OGP coatings promoted bone regeneration and osseointegration around implants in rats with bone defects. In conclusion, rationally designed PC/Fe@K6-RGD/OGP coating integrated RGD and OGP bioactivities, providing a convenient approach to enhance bioinert implant surfaces for bone regeneration.

6.
FEBS Open Bio ; 14(3): 455-465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212150

RESUMEN

Osteonecrosis of the femoral head (ONFH) is a condition caused by a disruption or damage to the femoral head's blood supply, which causes the death of bone cells and bone marrow components and prevents future regeneration. Ferroptosis, a type of controlled cell death, is caused by iron-dependent lipid peroxidation. Here, we identified ferroptosis-related genes and infiltrating immune cells involved in ONFH and predicted the underlying molecular mechanisms. The GSE123568 dataset was subjected to differential expression analysis to identify genes related to ferroptosis. Subsequently, GO and KEGG pathway enrichment analyses, as well as protein-protein interaction (PPI) network analysis, were conducted. Hub genes involved in ferroptosis were identified using machine learning and other techniques. Additionally, immune infiltration analysis and lncRNA-miRNA-mRNA network prediction analysis were performed. Finally, we determined whether ferroptosis occurred by measuring iron content. The hub genes were validated by ROC curve analysis and qRT-PCR. Four ferroptosis-related hub genes (MAPK3, PTGS2, STK11, and SLC2A1) were identified. Additionally, immune infiltration analysis revealed a strong correlation among ONFH, hub genes, and various immune cells. Finally, we predicted the network relationship between differentially expressed lncRNAs and hub genes in the lncRNA-miRNA-mRNA network. MAPK3, PTGS2, STK11, and SLC2A1 have been identified as potential ferroptosis-related biomarkers and drug targets for the diagnosis and prognosis of ONFH, while some immune cells, as well as the interaction between lncRNA, miRNA, and mRNA, have also been identified as potential pathogenesis markers and therapeutic targets.


Asunto(s)
Ferroptosis , MicroARNs , ARN Largo no Codificante , Cabeza Femoral , Ciclooxigenasa 2 , Ferroptosis/genética , ARN Largo no Codificante/genética , Hierro , Aprendizaje Automático , MicroARNs/genética , ARN Mensajero
7.
Mater Today Bio ; 25: 101017, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38495914

RESUMEN

The limited osteointegration often leads to the failure of implant, which can be improved by fixing bioactive molecules onto the surface, such as arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Metal-Phenolic Networks (MPNs) have garnered increasing attention from different disciplines in recent years due to their simple and rapid process for depositing on various substrates or particles with different shapes. However, the lack of cellular binding sites on MPNs greatly blocks its application in tissue engineering. In this study, we present a facile and efficient approach for producing PC/Fe@c(RGDfc) composite coatings through the conjugation of c(RGDfc) peptides onto the surface of PC/Fe-MPNs utilizing thiol-click reaction. By combined various techniques (ellipsometry, X-ray photoelectron spectroscopy, Liquid Chromatography-Mass Spectrometry, water contact angle, scanning electronic microscopy, atomic force microscopy) the physicochemical properties (composition, coating mechanism and process, modulus and hydrophilicity) of PC/Fe@c(RGDfc) surface were characterized in detail. In addition, the PC/Fe@c(RGDfc) coating exhibits the remarkable ability to positively modulate cellular attachment, proliferation, migration and promoted bone-implant integration in vivo, maintaining the inherent features of MPNs: anti-inflammatory, anti-oxidative properties, as well as multiple substrate deposition. This work contributes to engineering MPNs-based coatings with bioactive molecules by a facile and efficient thiol-click reaction, as an innovative perspective for future development of surface modification of implant materials.

8.
Bone Joint Res ; 12(3): 202-211, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37051810

RESUMEN

This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1ß in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors.

9.
Colloids Surf B Biointerfaces ; 229: 113454, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37499546

RESUMEN

Metal-polyphenol networks (MPNs) are of immense scientific interest because of their simple and rapid process to deposit on various substrates or particles with different shapes. However, there are rare reports on the effect of polyphenol molecular structure on coating efficiency and mechanism of MPNs. Herein, three typical flavonoid polyphenols, catechin (Cat), epigallocatechin (EGC) and procyanidin (PC), with the same skeleton (C6-C3-C6) but subtle distinction in molecular structure, were selected to build MPN coatings with ferric ions (Fe3+). And various techniques combined with the density functional theory (DFT) were applied to deeply reveal the roles of coordinative phenolic hydroxyl groups as well as noncovalent interactions (hydrogen bonding and π - π stacking) in the formation of flavonoid-based MPNs. We found that more accessible numbers of coordinative phenolic hydroxyl groups, the higher coating efficiency. In these flavonoid-based MPNs, the single-complex is the predominant during the coordinative modes between phenolic hydroxyl and Fe3+, not the previously reported mono-complex, bis-complex and/or tris-complex. Besides coordinative interaction, noncovalent interactions also contribute to MPNs formation, and hydrogen bonds prevail in the noncovalent interaction compared with π-π stacking. And these engineered MPN coatings can endow the substrate with excellent antioxidant activities. This study contributes to in-depth understanding the building mechanism of flavonoid-based MPNs, and increasing coating efficiency by choosing proper polyphenols.


Asunto(s)
Flavonoides , Polifenoles , Flavonoides/química , Antioxidantes/química , Estructura Molecular , Metales/química , Fenoles/química
10.
BMC Med Genomics ; 16(1): 198, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612746

RESUMEN

BACKGROUND: Osteoarthritis is a very common clinical disease in middle-aged and elderly individuals, and with the advent of ageing, the incidence of this disease is gradually increasing. There are few studies on the role of basement membrane (BM)-related genes in OA. METHOD: We used bioinformatics and machine learning methods to identify important genes related to BMs in OA patients and performed immune infiltration analysis, lncRNA‒miRNA-mRNA network prediction, ROC analysis, and qRT‒PCR. RESULT: Based on the results of machine learning, we determined that LAMA2 and NID2 were the key diagnostic genes of OA, which were confirmed by ROC and qRT‒PCR analyses. Immune analysis showed that LAMA2 and NID2 were closely related to resting memory CD4 T cells, mast cells and plasma cells. Two lncRNAs, XIST and TTTY15, were simultaneously identified, and lncRNA‒miRNA‒mRNA network prediction was performed. CONCLUSION: LAMA2 and NID2 are important potential targets for the diagnosis and treatment of OA.


Asunto(s)
MicroARNs , Osteoartritis , ARN Largo no Codificante , Anciano , Persona de Mediana Edad , Humanos , ARN Largo no Codificante/genética , MicroARNs/genética , Membrana Basal , Biomarcadores , Aprendizaje Automático , Osteoartritis/diagnóstico , Osteoartritis/genética , ARN Mensajero/genética
11.
Colloids Surf B Biointerfaces ; 221: 113000, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36371927

RESUMEN

Mucin, a family of glycoproteins, is widespread in the inner linings of various lumen organs and plays key roles in protecting epithelial cells from invasion by foreign species and communicating with the external environment. Here, we demonstrated that Mucin could be engineered as a promising building block in biomaterials with unexpected multifunctionalities by codepositing with procyanidin (PC, a kind of flavanol polyphenol) through a layer-by-layer technique. The process of generating PC/Mucin multilayers was well characterized and monitored, which was controllable by the assembly conditions. The behaviors of bone marrow mesenchymal stem cells (BMSCs), including proliferation, antioxidant ability, and expression of vinculin, were investigated to reveal the role of PC/Mucin multilayers on the osteogenic differentiation of BMSCs. Our data showed that PC/Mucin multilayers promoted osteogenesis-related genes (Col1, ON, OCN and RUNX2) in BMSCs in vitro and bone generation in vivo by activating the Wnt/ß-catenin pathway. These findings demonstrate that engineering Mucin might be a new route in the future to implant materials or coatings for bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Osteogénesis/genética , beta Catenina/genética , beta Catenina/metabolismo , Mucinas/genética , Mucinas/metabolismo , Vía de Señalización Wnt , Diferenciación Celular , Células Cultivadas
12.
Regen Biomater ; 10: rbac107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683760

RESUMEN

Collagen, commonly used in tissue engineering, is widespread in various tissues. During bone tissue regeneration, collagen can stimulate the cellular response and determine the fate of cells. In this work, we integrated collagen type II with procyanidin (PC) onto an implant coating by applying a layer-by-layer technique to demonstrate that collagen and PC can participate in the construction of new biomaterials and serve as multifunctional components. The effects of PC/collagen multilayers on the viability of cocultured bone marrow mesenchymal stem cells (BMSCs) were analyzed by cell counting kit-8 analysis and phalloidin staining. The reactive oxygen species level of BMSCs was revealed through immunofluorescent staining and flow cytometry. Osteogenesis-related genes were detected, and in vivo experiment was performed to reveal the effect of newly designed material on the osteogenic differentiation of BMSCs. Our data demonstrated that in BMSCs PC/collagen multilayers accelerated the proliferation and osteogenic differentiation through Wnt/ß-catenin signaling pathway and enhanced bone generation around the implant in the bone defect model of rabbit femurs. In summary, combination of collagen and PC provided a new sight for the research and development of implant materials or coatings in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA