RESUMEN
The solid-state synthesis of single-crystalline organic polymers, having functional properties, remains an attractive and developing research area in polymer chemistry and materials science. However, light-triggered topochemical synthesis of crystalline polymers comprising an organoboron backbone has not yet been reported. Here, we describe an intriguing example of single-crystal-to-single-crystal (SCSC) rapid photosynthesis (occurs on a seconds-scale) of two structurally different linear organoboron polymers, driven by environmentally sustainable visible/sun light, obtained from the same monomer molecule. A newly designed Lewis acid-base type molecular B â N organoboron adduct (consisting of an organoboron core and naphthylvinylpyridine ligands) crystallizes in two solid-state forms featuring the same chemical structure but different 3D structural topologies, namely, monomers 1 and 2. The solvate molecule-free crystals of 1 undergo topochemical photopolymerization via an unusual olefin-naphthyl ring [2 + 2] cyclization to yield the single crystalline [3]-ladderane polymer 1P growing along the B â N linkages, accompanied by instantaneous and violent macroscopic mechanical motions or photosalient effects (such as bending-reshaping and jumping motions). In contrast, visible light-harvesting single crystals of 2 quantitatively polymerize to a B â N bond-stabilized polymer 2P in a SCSC fashion owing to the rapid [2 + 2] cycloaddition reaction among olefin double bonds. Such olefin bonds in the crystals of 2 are suitably preorganized for photoreaction due to the presence of solvate molecules in the crystal packing. Single crystals of 2 also show photodynamic jumping motions - in response to visible light but in a relatively slower fashion than the crystals of 1. In addition to SCSC topochemical polymerization and dynamic motions, both monomer crystals and their single-crystalline polymers feature green emissive and short-lived room-temperature phosphorescence properties upon excitation with visible-light wavelength.
RESUMEN
Six isomeric molecules, featuring a minimum of three fluorine atoms on either the benzoyl or aniline side, have been synthesized, crystallized and characterized through single crystal X-ray diffraction (SCXRD). In addition, two other compounds, containing six fluorine atoms, three on each of the benzoyl and aniline side of the benzanilide scaffold have also been characterized through SCXRD. This current study aims to augment the capacity for hydrogen bond formation, specifically involving organic fluorine, by elevating the acidity of the involved hydrogens through the incorporation of highly electronegative fluorine atoms, in the presence of strong N-H×××O=C H-bonds. Lattice energy calculations and assessment of intermolecular interaction energies elucidate the contributions of electrostatics and dispersion forces in crystal packing. The topological analysis of the electron density is characterized by the presence of bond critical points (BCPs) involving C-H×××F and F×××F contacts, thus establishing the bonding nature of these interactions which play a crucial role in the crystal packing in addition to the presence of traditional N-H×××O=C H-bonds.
RESUMEN
Osteoarthritis (OA), affecting around 240 million people globally is a major threat. Currently, available drugs only treat the symptoms of OA; they cannot reverse the disease's progression. The delivery of drugs to afflicted joints is challenging because of poor vasculature of articular cartilage results in their less bioavailability and quick elimination from the joints. Recently approved drugs such as KGN and IL-1 receptor antagonists also encounter challenges because of inadequate formulations. Therefore, microspheres could be a potential player for the intervention of OA owing to its excellent physicochemical properties. This review primarily focuses on microspheres of distinct biomaterials acting as cargo for drugs and biologicals via different delivery routes in the effective management of OA. Microspheres can improve the efficacy of therapeutics by targeting strategies at specific body locations. This review also highlights clinical trials conducted in the last few decades.
Asunto(s)
Sistemas de Liberación de Medicamentos , Microesferas , Osteoartritis , Osteoartritis/tratamiento farmacológico , Humanos , AnimalesRESUMEN
Naringenin, a potent antioxidant with anti-apoptotic effects, holds potential in counteracting rotenone-induced neurotoxicity, a model for Parkinson's disease, by reducing oxidative stress and supporting mitochondrial function. Rotenone disrupts ATP production in SH-SY5Y cells through mitochondrial complex-I inhibition, leading to increased reactive oxygen species (ROS) and cellular damage. However, the therapeutic use of naringenin is limited by its poor solubility, low bioavailability, and stability concerns. Nano crystallization of naringenin (NCs), significantly improved its solubility, dissolution rates, and stability for targeted drug delivery. The developed NAR-NC and HSA-NAR-NC formulations exhibit particle sizes of 95.23 nm and 147.89 nm, with zeta potentials of -20.6 mV and -28.5 mV, respectively. These nanocrystals also maintain high drug content and show stability over time, confirming their pharmaceutical viability. In studies using the SH-SY5Y cell line, these modified nanocrystals effectively preserved mitochondrial membrane potential, sustained ATP production, and regulated ROS levels, counteracting the neurotoxic effects of rotenone. Naringenin nanocrystals offer a promising solution for improving the stability and bioavailability of naringenin, with potential therapeutic applications in neurodegenerative diseases.
Asunto(s)
Flavanonas , Potencial de la Membrana Mitocondrial , Mitofagia , Nanopartículas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Rotenona , Humanos , Flavanonas/farmacología , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Rotenona/toxicidad , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitofagia/efectos de los fármacos , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Solubilidad , Fármacos Neuroprotectores/farmacologíaRESUMEN
Viral infections represent a significant threat to global health due to their highly communicable and potentially lethal nature. Conventional antiviral interventions encounter challenges such as drug resistance, tolerability issues, specificity concerns, high costs, side effects, and the constant mutation of viral proteins. Consequently, the exploration of alternative approaches is imperative. Therefore, nanotechnology-embedded drugs excelled as a novel approach purporting severe life-threatening viral disease. Integrating nanomaterials and nanoparticles enables ensuring precise drug targeting, improved drug delivery, and fostered pharmacokinetic properties. Notably, nanocrystals (NCs) stand out as one of the most promising nanoformulations, offering remarkable characteristics in terms of physicochemical properties (higher drug loading, improved solubility, and drug retention), pharmacokinetics (enhanced bioavailability, dose reduction), and optical properties (light absorptivity, photoluminescence). These attributes make NCs effective in diagnosing and ameliorating viral infections. This review comprises the prevalence, pathophysiology, and resistance of viral infections along with emphasizing on failure of current antivirals in the management of the diseases. Moreover, the review also highlights the role of NCs in various viral infections in mitigating, diagnosing, and other NC-based strategies combating viral infections. In vitro, in vivo, and clinical studies evident for the effectiveness of NCs against viral pathogens are also discussed.
Asunto(s)
Nanopartículas , Virosis , Humanos , Preparaciones Farmacéuticas/química , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Virosis/tratamiento farmacológico , Nanopartículas/química , Antivirales/farmacología , Antivirales/uso terapéuticoRESUMEN
Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.
Asunto(s)
Sistemas de Liberación de Medicamentos , Inhaladores de Polvo Seco , Inhaladores de Polvo Seco/métodos , Humanos , Administración por Inhalación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Nanomedicina/métodos , Tamaño de la Partícula , Nanotecnología/métodosRESUMEN
Silibinin (SIL) Encapsulated Nanoliquid Crystalline (SIL-NLCs) particles were prepared to study neuroprotective effect against amyloid beta (Aß1-42) neurotoxicity in Balb/c mice model. Theses NLCs were prepared through hot emulsification and probe sonication technique. The pharmacodynamics was investigatigated on Aß1-42 intracerebroventricular (ICV) injected Balb/c mice. The particle size, zeta potential and drug loading were optimized to be 153 ± 2.5 nm, -21 mV, and 8.2%, respectively. Small angle X-ray (SAXS) and electron microscopy revealed to crystalline shape of SIL-NLCs. Thioflavin T (ThT) fluroscence and circular dichroism (CD) technique were employed to understand monomer inhibition effect of SIL-NLCs on Aß1-4. In neurobehavioral studies, SIL-NLCs exhibited enhanced mitigation of memory impairment induced on by Aß1-42 in T-maze and new object recognition test (NORT). Whereas biochemical and histopathological estimation of brain samples showed reduction in level of Aß1-42 aggregate, acetylcholine esterase (ACHE) and reactive oxygen species (ROS). SIL-NLCs treated animal group showed higher protection against Aß1-42 toxicity compared to free SIL and Donopezil (DPZ). Therefore SIL-NLCs promises great prospect in neurodegenerative diseases such as Alzheimer's disease.
Asunto(s)
Péptidos beta-Amiloides , Ratones Endogámicos BALB C , Fármacos Neuroprotectores , Fragmentos de Péptidos , Silibina , Animales , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Ratones , Silibina/farmacología , Silibina/administración & dosificación , Fragmentos de Péptidos/toxicidad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Tamaño de la Partícula , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Acetilcolinesterasa/metabolismoRESUMEN
This work focuses on developing nanoemulsions using a low-energy emulsification method for the codelivery of donepezil and memantine in one dosage form intended to be administered via the intranasal route for enhanced brain delivery. The nanoemulsion formulation was prepared using a low emulsification technique and characterized using various microscopy and nasal ciliotoxicity studies. The safe nanoemulsion was intended for preclinical pharmacokinetics with brain distribution and pharmacodynamics in a scopolamine-induced murine model. The formulated nanoemulsion was 16 nm in size, with a zeta potential of -7.22 mV, and exhibited a spherical shape. The brain concentration of IN-administered NE for DPZ and MEM was â¼678 and 249 ng/mL after 15 min. This concentration is more than 2 times higher in amount when compared with NE administered via PO, free drug solution administered via IN and PO route both. However, the plasma concentration of IN-administered NE for DPZ and MEM was â¼3 and 28 ng/mL after 15 min. In pharmacodynamic studies, the efficacy of NE administered via the IN route was higher when compared with other groups in neurobehavioral, biochemical estimation, and gene expression studies. The results suggest that the IN route can be explored in the future for the delivery of actives via nanocolloidal carriers in the brain for neurological disorders and can serve as promising alternatives for conventional dosage forms and routes.
Asunto(s)
Memantina , Nanopartículas , Ratones , Animales , Donepezilo , Administración Intranasal , Encéfalo/metabolismo , Escopolamina , Emulsiones/metabolismo , Nanopartículas/química , Tamaño de la PartículaRESUMEN
The gut-brain axis augments the bidirectional communication between the gut and brain and modulates gut homeostasis and the central nervous system through the hypothalamic-pituitary-adrenal axis, enteroendocrine system, neuroendocrine system, inflammatory and immune pathways. Preclinical and clinical reports showed that gut dysbiosis might play a major regulatory role in neurological diseases such as epilepsy, Parkinson's, multiple sclerosis, and Alzheimer's disease. Epilepsy is a chronic neurological disease that causes recurrent and unprovoked seizures, and numerous risk factors are implicated in developing epilepsy. Advanced consideration of the gut-microbiota-brain axis can reduce ambiguity about epilepsy pathology, antiepileptic drugs, and effective therapeutic targets. Gut microbiota sequencing analysis reported that the level of Proteobacteria, Verrucomicrobia, Fusobacteria, and Firmicutes was increased and the level of Actinobacteria and Bacteroidetes was decreased in epilepsy patients. Clinical and preclinical studies also indicated that probiotics, ketogenic diet, faecal microbiota transplantation, and antibiotics can improve gut dysbiosis and alleviate seizure by enhancing the abundance of healthy biota. This study aims to give an overview of the connection between gut microbiota, and epilepsy, how gut microbiome changes may cause epilepsy, and whether gut microbiome restoration could be used as a treatment for epilepsy.
RESUMEN
Boron nitrides are very important and are used as lubricants, insulating agents, etc. Interactions of such systems with small molecules are important. This study examined the potential of B3N3 (triboron trinitride) to act as both an electron acceptor and an electron donor in the formation of noncovalent interactions. The anisotropic electronic distribution observed in the electrostatic potential map supported the B3N3's ability to exhibit the predicted electron donor-acceptor duality. Further computational investigations on optimized gas-phase complexes of B3N3:(NH3)n=1-3, B3N3:(NCH)n=1-6, B3N3:(N2H2)n=1-3 and (B3N3)2 confirmed that the B3N3 molecule can participate in Bâ¯N triel bonding interactions and H···N hydrogen bonding interactions. These energetically stable complexes are primarily governed by electrostatic and polarization interactions.
RESUMEN
Most of the experimental and theoretical work in hole interactions (HIs) is mainly focused on exploiting the nature and characteristics of σ and π-holes. In this perspective, we focus our attention on understanding the origin and properties of lone-pair holes. These holes are present on an atom opposite to its lone-pair region. Utilizing some new and old examples, such as X3N/Pâ¯F- (X = F/Cl/Br/I), F-Cl/Br/Iâ¯H3Pâ¯NCH and H3B-NBr3 along with other molecular systems, we explored to what extent these lp-holes participate in lp-hole interactions, if they participate at all.
RESUMEN
This study investigates the crystal structures of substituted thiophenes and isothiocyanates by utilizing the method of in situ cryo-crystallization to gain quantitative insights into the electronic features of sulfur-centered interactions. This work reveals that the role of sulfur as a "nucleophilic" or "electrophilic" species during non-covalent interaction is significantly influenced by its immediate chemical and electronic surroundings.
RESUMEN
Cancer is an intricate disease that develops as a response to a combination of hereditary and environmental risk factors, which then result in a variety of changes to the genome. The cluster of differentiation (CD44) is a type of transmembrane glycoprotein that serves as a potential biomarker for cancer stem cells (CSC) and viable targets for therapeutic intervention in the context of cancer therapy. Hyaluronic acid (HA) is a linear polysaccharide that exhibits a notable affinity for the CD44 receptor. This characteristic renders it a promising candidate for therapeutic interventions aimed at selectively targeting CD44-positive cancer cells. Treating cancer via non-viral vector-based gene delivery has changed the notion of curing illness through the incorporation of therapeutic genes into the organism. The objective of this review is to provide an overview of various hyaluronic acid-modified lipoplexes and polyplexes as potential drug delivery methods for specific forms of cancer by effectively targeting CD44.
Asunto(s)
Ácido Hialurónico , Neoplasias , Humanos , Ácido Hialurónico/metabolismo , Sistemas de Liberación de Medicamentos , Neoplasias/terapia , Línea Celular TumoralRESUMEN
PURPOSE: Complicated intra-abdominal infection (cIAI) management involves administering antibiotics that destroy the cell wall and the genesis of bacterial lipopolysaccharide (LPS). During the infectious state, the expression of transferrin receptors upregulates on the intestinal epithelial cells, which are considered the site of infection. In the present research, transferrin decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) encapsulated moxifloxacin (MOX) were developed for possible targeting of the receptors in the colon. SIGNIFICANCE: This study will explore more about the incorporation of transferrin as effective coating material in targeted drug delivery. METHODS: Nanoparticles were prepared using nano-emulsification and surface modification with transferrin was done by layer-by-layer methodology and evaluated by powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), FTIR, SEM, antibacterial activity, and cellular uptake studies. RESULTS: The formulated NPs exhibit a size of ≈170 nm, PDI ≈ 0.25, zeta potential ≈-4.0 mV, drug loading ≈ 6.8%, and entrapment efficiency of 82%. Transferrin-decorated NPs exhibit tailored release for almost 12 h and in vitro antibacterial activity for 14 h. The cellular uptake studies were done on a RAW264.7 cell line for better determination of transferrin uptake of fabricated NPs. CONCLUSION: The above study circumvents around the preparation of transferrin decorated PLGA encumbered MOX NPs intended for cIAI-induced sepsis. PLGA NPs provide tailored release of MOX with primary burst and followed by sustained release. These observations confines with antibacterial activity studies. The prepared transferrin-coated NPs were stable and effectively uptaken by RAW264.7 cells. However, future studies include the preclinical investigation of these NPs in sepsis-induced murine models.
Asunto(s)
Nanopartículas , Ácido Poliglicólico , Ratones , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Moxifloxacino , Ácido Láctico , Transferrina , Liberación de Fármacos , Antibacterianos/farmacología , Tamaño de la Partícula , Portadores de FármacosRESUMEN
Simvastatin is a semisynthetic inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and is used extensively to treat atherosclerotic cardiovascular disease. Apart from the lipid-lowering effect, simvastatin has been documented to offer impressive vasorelaxant activity. However, the mechanism associated with this vasorelaxant activity has yet not been substantially explored. Thus, the present study has aimed to elucidate the mechanism(s) associated with simvastatin-induced vasorelaxation using an established rat aortic ring model. The results from the study depicted that simvastatin caused significant relaxation in aortic rings pre-contracted with phenylephrine and potassium chloride (KCl). The vasorelaxant effect of simvastatin was attenuated by methylene blue (sGC-dependent cyclic guanosine monophosphate (cGMP) inhibitor), NG-nitro-L-arginine methyl ester (L-NAME; NO synthase inhibitor), 4-aminopyridine (Kv blocker), glibenclamide (KATP blocker), and barium chloride (Kir blocker). In addition, the vasorelaxant effect of simvastatin was slightly reduced by PD123319 (angiotensin II type 2 receptor (AT2R) antagonist). However, indomethacin (COX inhibitor), 1H-[1,2,4]Ox adiazolol [4,3-α]quinoxalin-1-one (ODQ; selective soluble guanylate cyclase (sGC) inhibitor), losartan (angiotensin II type 1 receptor (AT1R) antagonist), atropine (muscarinic receptor blocker), and tetraethyl ammonium (TEA; KCa blocker) did not affect the vasorelaxant effect of simvastatin. Furthermore, simvastatin was found to attenuate the release of calcium (Ca2+) from intracellular stores in the presence of ruthenium red (ryanodine receptor, RyR inhibitor) and extracellular stores via nifedipine (voltage-operated Ca2+ channels, VOCC blocker) and SK&F96365 (receptor-operated Ca2+ channel, ROCC blocker). Thus, it can be concluded that the vasorelaxant effect of simvastatin involves NO/cGMP pathways, AT2R receptors, Ca2+ channels, and K+ channels.
Asunto(s)
Canales de Calcio , Vasodilatadores , Ratas , Animales , Vasodilatadores/farmacología , Canales de Calcio/metabolismo , Aorta Torácica , Señalización del Calcio , Inhibidores Enzimáticos , Endotelio VascularRESUMEN
Numerous neurodegenerative conditions, such as Alzheimer's, Huntington's, Parkinson's, amyotrophic lateral sclerosis, and glioblastoma multiform are now becoming significant concerns of global health. Formulation-related issues, physiological and anatomical barriers, post-administration obstacles, physical challenges, regulatory limitations, environmental hurdles, and health and safety issues have all hindered successful delivery and effective outcomes despite a variety of treatment options. In the current review, we covered the intranasal route, an alternative strategic route targeting brain for improved delivery across the BBB. The trans-nasal pathway is non-invasive, directing therapeutics directly towards brain, circumventing the barrier and reducing peripheral exposure. The delivery of nanosized vesicles loaded with drugs was also covered in the review. Nanovesicle systems are organised in concentric bilayered lipid membranes separated with aqueous layers. These carriers surmount the disadvantages posed by intranasal delivery of rapid mucociliary clearance and enzymatic degradation, and enhance retention of drug to reach the site of target. In conclusion, the review covers in-depth conclusions on numerous aspects of formulation of drug-loaded vesicular system delivery across BBB, current marketed nasal devices, significant jeopardies, potential therapeutic aids, and current advancements followed by future perspectives.
Asunto(s)
Glioblastoma , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Nariz , Sistemas de Liberación de Medicamentos , EncéfaloRESUMEN
Rivastigmine hydrogen tartrate (RHT) is an acetylcholinesterase (AChE) inhibitor used in the management of Alzheimer's disease (AD). RHT is a BCS class-I drug that undergoes significant first-pass metabolism. Permeating a hydrophilic drug through the brain remains a major challenge in brain delivery. In this study, the RHT was incorporated inside the hydrophilic core of liposomes (LPS) and then coated with the ApoE3. ApoE3-coated RHT-loaded liposomes (ApoE3-RHT-LPS) were fabricated through the thin film hydration method using DSPE-PEG. The coating of LPS with ApoE3 enhances brain uptake and improves Aß clearance. The results obtained from the physicochemical characterization demonstrated that ApoE3-RHT-LPS shows a particle size of 128.6 ± 2.16 nm and a zeta potential of 16.6 ± 1.19. The % entrapment efficiency and % drug loading were found to be 75% and 17.84%, respectively. The data obtained from TEM and SEM studies revealed that the particle size of the LPS was less than 200 nm. An in vitro AChE assay was performed, and the results demonstrated the AChE inhibitory potential of ApoE3-RHT-LPS. Through the intravenous route, an in vivo pharmacokinetic study of formulation displayed improved brain uptake of RHT by ~ 1.3-fold than pure RHT due to ApoE3 coating. In vivo, biodistribution studies in vital organs suggested that the biodistribution of RHT to the liver was significantly reduced (p < 0.001), signifying an increase in the drug's half-life and blood circulation time. All research findings suggested that ApoE3 coating and LPS strategy are proven effective for improving the brain uptake of RHT designed for the management of AD.
Asunto(s)
Enfermedad de Alzheimer , Liposomas , Humanos , Rivastigmina , Liposomas/química , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacología , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Acetilcolinesterasa/uso terapéutico , Distribución Tisular , Lipopolisacáridos , Encéfalo/metabolismo , Inhibidores de la Colinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Tamaño de la PartículaRESUMEN
Microneedles are one of the most prominent approaches capable of physically disrupting the stratum corneum without devastating the deeper tissues to deliver both small molecules and macromolecules into the viable epidermis/dermis for local/systemic effects. Over the past two decades, microneedles have caught the attention of many researchers because of their outstanding advantages over oral and parenteral drug delivery systems such as self-administration, pain-free, steady-plasma concentration maintenance, avoidance of first-pass hepatic biotransformation, and so on. So far, scientists have reported various types of microneedle patches to deliver the loaded therapeutics as soon as the microneedles are inserted into the skin, regardless of the demand for therapeutics to treat a specific condition. This way of drug delivery can lead to potential risks such as poor therapeutic efficacy or drug overdose. The stimuli-responsive microneedles are the most predominant tool to achieve the on-demand/need-based drug delivery, leading to safe and effective treatment. Various natural and synthetic polymers that can undergo significant transitions such as swelling, shrinking, dissolution, or disintegration play a pivotal role in the development of stimuli-responsive microneedles. The current Review provides brief information about the history, emergence, type, and working principles of microneedles. Furthermore, it selectively discusses various exogenous and endogenous stimuli-responsive microneedles along with their mechanism of action involved in treating different disease conditions. Collaterally, the emergence of "closed-loop" combinatorial stimuli-responsive microneedle patches for precise delivery of therapeutics is meticulously canvassed. Subsequently, it covers the patents of different stimuli-responsive microneedles and further highlights the existing challenges and future perspectives concerning clinical application and large-scale production.
Asunto(s)
Agujas , Absorción Cutánea , Administración Cutánea , Sistemas de Liberación de Medicamentos , Microinyecciones , PielRESUMEN
At the end of 2019 and 2020s, a wave of coronavirus disease 19 (COVID-19) epidemics worldwide has catalyzed a new era of 'communicable infectious diseases'. However, the world is not currently prepared to deal with the growing burden of COVID-19, with the unexpected arrival of Hantavirus infection heading to the next several healthcare emergencies in public. Hantavirus is a significant class of zoonotic pathogens of negative-sense single-stranded ribonucleic acid (RNA). Hemorrhagic renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are the two major clinical manifestations. Till date, there is no effective treatments or vaccines available, public awareness and precautionary measures can help to reduce the spread of hantavirus disease. In this study, we outline the epidemiology, virology, clinical aspects, and existing HFRS and HCPS management approaches. This review will give an understanding of virus-host interactions and will help for the early preparation and effective handling of further outbreaks in an ever-changing environment.
Asunto(s)
COVID-19 , Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , COVID-19/epidemiología , Brotes de Enfermedades , Orthohantavirus/genética , Infecciones por Hantavirus/epidemiología , Fiebre Hemorrágica con Síndrome Renal/epidemiología , HumanosRESUMEN
Piperine (PIP) is a neuroprotective phytomedicine that has profound acetylcholine esterase and reactive oxygen species inhibition effect in Alzheimer's disease (AD) model. However, the oral delivery of PIP is limited by poor aqueous solubility and low bioavailability in systemic circulation. To improve the PIP bioavailability, the polyamidoamine (PAMAM) G4 dendrimer is grafted with tocopheryl polyethylene glycol succinate-1000 (TPGS) through carbodiimide chemistry to form TPGS-PAMAM conjugate. The TPGS-PAMAM coupling was confirmed through proton NMR and FTIR techniques. PIP was encapsulated in the TPGS-PAMAM through solvent diffusion method to form PIP-TPGS-PAMAM. The particle size for PIP-TPGS-PAMAM found the less than 50 nm, whereas entrapment efficiency found to 87 ± 3.5% and 10.6 ± 2.9% drug loading. The powder differential scanning calorimetry and powder X-ray diffraction characterization were employed to evaluate the amorphous encapsulation of the PIP in TPGS-PAMAM. The PIP-TPGS-PAMAM stability was studied in the gastric fluids which showed no drastic difference in particle size and encapsulation efficiency compared to PIP-PAMAM. The in vitro release analysis revealed 37 ± 4.1% PIP release from the PIP-TPGS-PAMAM matrix, and 71 ± 4.9% PIP release from the PIP-PAMAM dendrimer was observed in 48 h. The single-dose oral gavage to Wistar rats of PIP-TPGS-PAMAM showed the AUC0-∞ 14.38 µg/mL.h, Cmax 7.77 ± 1.65 µg/mL, Tmax, 1.6 ± 0.18 h, and half-life 3.47 ± 0.64 h for PIP in systemic circulation. PIP-PAMAM and free PIP showed significantly poor AUC0-∞ compared to PIP-TPGS-PAMAM. The brain uptake studies revealed PIP-TPGS-PAMAM treated group showed 2.2 ± 0.37 µg/g PIP content compared to free PIP administered group which was 0.4 ± 0.10 µg/g. Therefore, PIP-TPGS-PAMAM can offer excellent prospect for the delivery hydrophobic drugs to brain in AD.