RESUMEN
The Warburg effect, which originally described increased production of lactate in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, polarization of macrophages and activation of T cells. This phenomenon is intimately linked to several diseases including neoplasia, sepsis and autoimmune diseases1,2. Lactate, which is converted from pyruvate in tumour cells, is widely known as an energy source and metabolic by-product. However, its non-metabolic functions in physiology and disease remain unknown. Here we show that lactate-derived lactylation of histone lysine residues serves as an epigenetic modification that directly stimulates gene transcription from chromatin. We identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce the production of lactate by glycolysis, and this acts as a precursor that stimulates histone lactylation. Using M1 macrophages that have been exposed to bacteria as a model system, we show that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, increased histone lactylation induces homeostatic genes that are involved in wound healing, including Arg1. Collectively, our results suggest that an endogenous 'lactate clock' in bacterially challenged M1 macrophages turns on gene expression to promote homeostasis. Histone lactylation thus represents an opportunity to improve our understanding of the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.
Asunto(s)
Epigénesis Genética , Glucólisis/genética , Histonas/química , Histonas/metabolismo , Ácido Láctico/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Homeostasis , Humanos , Hipoxia/metabolismo , Lisina/química , Lisina/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Transcripción GenéticaRESUMEN
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that persists in the hospital environment and causes various clinical infections, primarily affecting immunocompromised patients. A. baumannii has evolved a wide range of mechanisms to compete with neighbouring bacteria. One such competition strategy depends on small secreted peptides called microcins, which exert antimicrobial effects in a contact-independent manner. Here, we report that A. baumannii ATCC 17978 (AB17978) encodes the class II microcin 17â978 (Mcc17978) with antimicrobial activity against closely related Acinetobacter, and surprisingly, also Escherichia coli strains. We identified the genetic locus encoding the Mcc17978 system in AB17978. Using classical bacterial genetic approaches, we determined that the molecular receptor of Mcc17978 in E. coli is the iron-catecholate transporter Fiu, and in Acinetobacter is Fiu's homolog, PiuA. In bacteria, the Ferric uptake regulator (Fur) positively regulates siderophore systems and microcin systems under iron-deprived environments. We found that the Mcc17978 system is upregulated under low-iron conditions commonly found in the host environment and identified a putative Fur binding site upstream of the mcc17978 gene. When we tested the antimicrobial activity of Mcc17978 under different levels of iron availability, we observed that low iron levels not only triggered transcriptional induction of the microcin, but also led to enhanced microcin activity. Taken together, our findings suggest that A. baumannii may utilize microcins to compete with other microbes for resources during infection.
Asunto(s)
Acinetobacter baumannii , Antiinfecciosos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Hierro/metabolismo , Antiinfecciosos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismoRESUMEN
A critical facet of mammalian innate immunity involves the hosts' attempts to sequester and/or limit the availability of key metabolic products from pathogens. For example, nutritional immunity encompasses host approaches to limit the availability of key heavy metal ions such as zinc and iron. Previously, we identified several hundred genes in a multidrug-resistant isolate of Acinetobacter baumannii that are required for growth and/or survival in the Galleria mellonella infection model. In the present study, we further characterize one of these genes, a LysR family transcription regulator that we previously named GigC. We show that mutant strains lacking gigC have impaired growth in the absence of the amino acid cysteine and that gigC regulates the expression of several genes involved in the sulfur assimilation and cysteine biosynthetic pathways. We further show that cells harboring a deletion of the gigC gene are attenuated in two murine infection models, suggesting that the GigC protein, likely through its regulation of the cysteine biosynthetic pathway, plays a key role in the virulence of A. baumannii.
Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/fisiología , Cisteína/metabolismo , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica , Ratones , Familia de Multigenes , Unión Proteica , Multimerización de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Virulencia/genética , Factores de Virulencia/genéticaRESUMEN
Legionella pneumophila, the Gram-negative pathogen causing Legionnaires' disease, infects host cells by hijacking endocytic pathways and forming a Legionella-containing vacuole (LCV) in which the bacteria replicate. To promote LCV expansion and prevent lysosomal targeting, effector proteins are translocated into the host cell where they alter membrane traffic. Here we show that three of these effectors [LegC2 (Legionella eukaryotic-like gene C2)/YlfB (yeast lethal factor B), LegC3, and LegC7/YlfA] functionally mimic glutamine (Q)-SNARE proteins. In infected cells, the three proteins selectively form complexes with the endosomal arginine (R)-SNARE vesicle-associated membrane protein 4 (VAMP4). When reconstituted in proteoliposomes, these proteins avidly fuse with liposomes containing VAMP4, resulting in a stable complex with properties resembling canonical SNARE complexes. Intriguingly, however, the LegC/SNARE hybrid complex cannot be disassembled by N-ethylmaleimide-sensitive factor. We conclude that LegCs use SNARE mimicry to divert VAMP4-containing vesicles for fusion with the LCV, thus promoting its expansion. In addition, the LegC/VAMP4 complex avoids the host's disassembly machinery, thus effectively trapping VAMP4 in an inactive state.
Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Fusión de Membrana , Proteínas Q-SNARE/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Endosomas/metabolismo , Endosomas/microbiología , Interacciones Huésped-Patógeno , Humanos , Legionella pneumophila/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Unión Proteica , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Interferencia de ARN , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/microbiología , Vacuolas/metabolismo , Vacuolas/microbiologíaRESUMEN
A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii, a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTSNtr), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii, and coupling this pathway with the PTSNtr allows A. baumannii to integrate cellular metabolic status with external environmental cues.IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii, encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we investigate two previously identified virulence determinants, GigA and GigB, and report that they are required for in vitro stress resistance, likely comprising upstream elements of a global stress response pathway. Additional experiments identify a connection between GigA/GigB and a widely conserved metabolic-sensing pathway, the nitrogen phosphotransferase system. We propose that coordination of these two pathways allows A. baumannii to respond appropriately to changing environmental conditions, including those encountered during infection.
Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Genes Reguladores , Transducción de Señal , Estrés Fisiológico , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/fisiología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Regulón , VirulenciaRESUMEN
Legionella and Coxiella are intracellular pathogens that use the virulence-related Icm/Dot type-IVB secretion system to translocate effector proteins into host cells during infection. These effectors were previously shown to contain a C-terminal secretion signal required for their translocation. In this research, we implemented a hidden semi-Markov model to characterize the amino acid composition of the signal, thus providing a comprehensive computational model for the secretion signal. This model accounts for dependencies among sites and captures spatial variation in amino acid composition along the secretion signal. To validate our model, we predicted and synthetically constructed an optimal secretion signal whose sequence is different from that of any known effector. We show that this signal efficiently translocates into host cells in an Icm/Dot-dependent manner. Additionally, we predicted in silico and experimentally examined the effects of mutations in the secretion signal, which provided innovative insights into its characteristics. Some effectors were found to lack a strong secretion signal according to our model. We demonstrated that these effectors were highly dependent on the IcmS-IcmW chaperons for their translocation, unlike effectors that harbor a strong secretion signal. Furthermore, our model is innovative because it enables searching ORFs for secretion signals on a genomic scale, which led to the identification and experimental validation of 20 effectors from Legionella pneumophila, Legionella longbeachae, and Coxiella burnetii. Our combined computational and experimental methodology is general and can be applied to the identification of a wide spectrum of protein features that lack sequence conservation but have similar amino acid characteristics.
Asunto(s)
Simulación por Computador , Coxiella burnetii/patogenicidad , Legionella pneumophila/patogenicidad , Virulencia , Secuencia de Aminoácidos , Coxiella burnetii/genética , Genoma Bacteriano , Legionella pneumophila/genética , Cadenas de Markov , Datos de Secuencia Molecular , Transporte de ProteínasRESUMEN
Coxiella burnetii, the causative agent of Q fever, is a human intracellular pathogen that utilizes the Icm/Dot type IVB secretion system to translocate effector proteins into host cells. To identify novel C. burnetii effectors, we applied a machine-learning approach to predict C. burnetii effectors, and examination of 20 such proteins resulted in the identification of 13 novel effectors. To determine whether these effectors, as well as several previously identified effectors, modulate conserved eukaryotic pathways, they were expressed in Saccharomyces cerevisiae. The effects on yeast growth were examined under regular growth conditions and in the presence of caffeine, a known modulator of the yeast cell wall integrity (CWI) mitogen-activated protein (MAP) kinase pathway. In the presence of caffeine, expression of the effectors CBU0885 and CBU1676 caused an enhanced inhibition of yeast growth, and the growth inhibition of CBU0388 was suppressed. Furthermore, analysis of synthetic lethality effects and examination of the activity of the CWI MAP kinase transcription factor Rlm1 indicated that CBU0388 enhances the activation of this MAP kinase pathway in yeast, while CBU0885 and CBU1676 abolish this activation. Additionally, coexpression of CBU1676 and CBU0388 resulted in mutual suppression of their inhibition of yeast growth. These results strongly indicate that these three effectors modulate the CWI MAP kinase pathway in yeast. Moreover, both CBU1676 and CBU0885 were found to contain a conserved haloacid dehalogenase (HAD) domain, which was found to be required for their activity. Collectively, our results demonstrate that MAP kinase pathways are most likely targeted by C. burnetii Icm/Dot effectors.
Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coxiella burnetii/genética , Coxiella burnetii/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/genética , Línea Celular Tumoral , Células HL-60 , Humanos , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Transporte de Proteínas/genética , Fiebre Q/genética , Fiebre Q/metabolismo , Fiebre Q/microbiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and replicates within macrophages and protozoan cells inside a vacuole. The type IVB Icm/Dot secretion system is necessary for the translocation of effector proteins that modulate vesicle trafficking pathways in the host cell, thus avoiding phagosome-lysosome fusion. The Legionella VipA effector was previously identified by its ability to interfere with organelle trafficking in the Multivesicular Body (MVB) pathway when ectopically expressed in yeast. In this study, we show that VipA binds actin in vitro and directly polymerizes microfilaments without the requirement of additional proteins, displaying properties distinct from other bacterial actin nucleators. Microscopy studies revealed that fluorescently tagged VipA variants localize to puncta in eukaryotic cells. In yeast these puncta are associated with actin-rich regions and components of the Multivesicular Body pathway such as endosomes and the MVB-associated protein Bro1. During macrophage infection, native translocated VipA associated with actin patches and early endosomes. When ectopically expressed in mammalian cells, VipA-GFP displayed a similar distribution ruling out the requirement of additional effectors for binding to its eukaryotic targets. Interestingly, a mutant form of VipA, VipA-1, that does not interfere with organelle trafficking is also defective in actin binding as well as association with early endosomes and shows a homogeneous cytosolic localization. These results show that the ability of VipA to bind actin is related to its association with a specific subcellular location as well as its role in modulating organelle trafficking pathways. VipA constitutes a novel type of actin nucleator that may contribute to the intracellular lifestyle of Legionella by altering cytoskeleton dynamics to target host cell pathways.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Bacterianas/fisiología , Interacciones Huésped-Patógeno , Legionella pneumophila , Orgánulos/metabolismo , Animales , Proteínas Bacterianas/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , Células CHO , Cricetinae , Cricetulus , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Legionella pneumophila/fisiología , Mutagénesis/fisiología , Orgánulos/fisiología , Organismos Modificados Genéticamente , Saccharomyces cerevisiae , Células U937RESUMEN
Hfq is a small RNA-binding protein involved in the post-transcriptional regulation of gene expression by affecting the stability of the mRNA and by mediating efficient pairing between small regulatory RNAs and their target mRNAs. In Legionella pneumophila, the aetiological agent of Legionnaires' disease, mutation of hfq results in increased duration of the lag phase and reduced growth in low-iron medium. In an effort to uncover genes potentially regulated by Hfq, the transcriptome of an hfq mutant strain was compared to that of the wild-type. Unexpectedly, many genes located within a 100 kb genomic island, including a section of the previously identified efflux island, were overexpressed in the hfq mutant strain. Since this island contains a putative conjugative system and an integrase, it was postulated that it could be a new integrated mobile genetic element. PCR analysis revealed that this region exists both as an integrated and as an episomal form in the cell population and that it undergoes differential excision in the hfq mutant background, which was further confirmed by trans-complementation of the hfq mutation. This new plasmid-like element was named pLP100. Differential excision did not affect the copy number of pLP100 at the population level. This region contains a copper efflux pump encoded by copA, and increased resistance to copper was observed for the hfq mutant strain that was abrogated in the complemented strain. A strain carrying a mutation of hfq and a deletion of the right side recombination site, attR, showed that overexpression of pLP100 genes and increased copper resistance in the hfq mutant strain were dependent upon excision of pLP100.
Asunto(s)
Eliminación de Gen , Proteína de Factor 1 del Huésped/genética , Secuencias Repetitivas Esparcidas , Legionella pneumophila/genética , Transcriptoma , Genoma Bacteriano , Plásmidos , Reacción en Cadena de la Polimerasa , Recombinación GenéticaRESUMEN
Copper ions are an effective antimicrobial agent used to control Legionnaires' disease and Pontiac fever arising from institutional drinking water systems. Here, we present data on an alternative bactericidal agent, copper oxide nanoparticles (CuO-NPs), and its efficacy on Legionella pneumophila. In broth cultures, the CuO-NPs caused growth inhibition, which appeared to be concentration and exposure time dependent. The transcriptomic response of L. pneumophila to CuO-NP exposure was investigated by using a whole-genome microarray. The expression of genes involved in metabolism, transcription, translation, DNA replication and repair, and unknown/hypothetical proteins was significantly affected by exposure to CuO-NPs. In addition, expression of 21 virulence genes was also affected by exposure to CuO-NP and further evaluated by quantitative reverse transcription-PCR (qRT-PCR). Some virulence gene responses occurred immediately and transiently after addition of CuO-NPs to the cells and faded rapidly (icmV, icmW, lepA), while expression of other genes increased within 6 h (ceg29, legLC8, legP, lem19, lem24, lpg1689, and rtxA), 12 h (cegC1, dotA, enhC, htpX, icmE, pvcA, and sidF), and 24 h (legP, lem19, and ceg19), but for most of the genes tested, expression was reduced after 24 h of exposure. Genes like ceg29 and rtxA appeared to be the most responsive to CuO-NP exposures and along with other genes identified in this study may prove useful to monitor and manage the impact of drinking water disinfection on L. pneumophila.
Asunto(s)
Cobre/farmacología , Expresión Génica/efectos de los fármacos , Legionella pneumophila/efectos de los fármacos , Nanopartículas del Metal , Antibacterianos/farmacología , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Nanopartículas del Metal/química , Oligoelementos/farmacología , Transcripción Genética/efectos de los fármacosRESUMEN
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of sigma(70)-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Asunto(s)
Legionella pneumophila/genética , ARN Bacteriano/genética , Algoritmos , Proteínas Bacterianas/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Modelos Biológicos , Modelos Genéticos , Mutación , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN no Traducido , Transcripción Genética , Virulencia , Factores de Virulencia/genéticaRESUMEN
We present the genomic sequence of the human pathogen Legionella pneumophila serogroup 12 strain 570-CO-H (ATCC 43290), a clinical isolate from the Colorado Department of Health, Denver, CO. This is the first example of a genome sequence of L. pneumophila from a serogroup other than serogroup 1. We highlight the similarities and differences relative to six genome sequences that have been reported for serogroup 1 strains.
Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Legionella pneumophila/genética , Colorado , Humanos , Legionella pneumophila/clasificación , Legionella pneumophila/aislamiento & purificación , Enfermedad de los Legionarios/microbiología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , SerotipificaciónRESUMEN
Natural transformation by competence is a major mechanism of horizontal gene transfer in bacteria. Competence is defined as the genetically programmed physiological state that enables bacteria to actively take up DNA from the environment. The conditions that signal competence development are multiple and elusive, complicating the understanding of its evolutionary significance. We used expression of the competence gene comEA as a reporter of competence development and screened several hundred molecules for their ability to induce competence in the freshwater living pathogen Legionella pneumophila. We found that comEA expression is induced by chronic exposure to genotoxic molecules such as mitomycin C and antibiotics of the fluoroquinolone family. These results indicated that, in L. pneumophila, competence may be a response to genotoxic stress. Sunlight-emitted UV light represents a major source of genotoxic stress in the environment and we found that exposure to UV radiation effectively induces competence development. For the first time, we show that genetic exchanges by natural transformation occur within an UV-stressed population. Genotoxic stress induces the RecA-dependent SOS response in many bacteria. However, genetic and phenotypic evidence suggest that L. pneumophila lacks a prototypic SOS response and competence development in response to genotoxic stress is RecA independent. Our results strengthen the hypothesis that competence may have evolved as a DNA damage response in SOS-deficient bacteria. This parasexual response to DNA damage may have enabled L. pneumophila to acquire and propagate foreign genes, contributing to the emergence of this human pathogen.
Asunto(s)
Antibacterianos/farmacología , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/efectos de la radiación , Rayos Ultravioleta , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Daño del ADN , Reparación del ADN , ADN Bacteriano , Regulación Bacteriana de la Expresión Génica/fisiología , Transferencia de Gen Horizontal , HumanosRESUMEN
Inhibition of bacterial transcription represents an effective and clinically validated anti-infective chemotherapeutic strategy. We describe the evolution of our approach to the streptolydigin class of antibiotics that target bacterial RNA polymerases (RNAPs). This effort resulted in the synthesis and biological evaluation of streptolydigin, streptolydiginone, streptolic acid, and a series of new streptolydigin-based agents. Subsequent biochemical evaluation of RNAP inhibition demonstrated that the presence of both streptolic acid and tetramic acid subunits was required for activity of this class of antibiotics. In addition, we identified 10,11-dihydrostreptolydigin as a new RNAP-targeting agent, which was assembled with high synthetic efficiency of 15 steps in the longest linear sequence. Dihydrostreptolydigin inhibited three representative bacterial RNAPs and displayed in vitro antibacterial activity against S. salivarius . The overall increase in synthetic efficiency combined with substantial antibacterial activity of this fully synthetic antibiotic demonstrates the power of organic synthesis in enabling design and comprehensive in vitro pharmacological evaluation of new chemical agents that target bacterial transcription.
Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Streptococcus/efectos de los fármacos , Aminoglicósidos/síntesis química , Aminoglicósidos/química , Antibacterianos/síntesis química , Antibacterianos/química , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Thermus/químicaRESUMEN
Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host-pathogen interactions.
Asunto(s)
Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología , Animales , Proteínas Bacterianas/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Proteínas Portadoras/metabolismo , Línea Celular , Citoesqueleto/fisiología , Genes Reporteros , Interacciones Huésped-Patógeno/fisiología , Humanos , Ionóforos/farmacología , Legionella pneumophila/genética , Enfermedad de los Legionarios/genética , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Opsoninas , Fagocitosis/fisiología , Transporte de Proteínas , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Bibliotecas de Moléculas Pequeñas , beta-Lactamasas/genética , beta-Lactamasas/metabolismoRESUMEN
During the course of research on the bacterial feeding behavior and resistance of amoebae to virulent pathogens, we isolated a new strain of amoeba from organic rich soil at the margin of freshwater swamp in the northeastern United States. Light microscopic morphology is characteristically heterolobosean, resembling vahlkampfiids, including a broadened, limax shape, and eruptive locomotion, but occasionally becoming more contracted and less elongated with lateral or anterior bulges and somewhat branching sparse, uroidal filaments. Electron microscopic evidence, including mitochondria with flattened cristae surrounded by rough endoplasmic reticulum, further indicates a heterolobosean affinity. The solitary nucleus contains a centrally located nucleolus. Cysts are rounded with occasionally an eccentrically located nucleus. The cyst walls are relatively thin, becoming crenated, and loosely enclosing the cyst when mature. Molecular genetic evidence places this isolate among the Heterolobosea, branching most closely in a clade including Allovahlkampfia spelaea and previously isolated, un-named strains of soil amoebae. Based on differentiated features, including morphology of the uroid, cyst wall structure, and molecular genetic evidence that distinguish it from A. spelaea, a new genus and species, Solumitrus palustris, is proposed for this new heterolobosean.
Asunto(s)
Amoeba/clasificación , Amoeba/aislamiento & purificación , Agua Dulce/parasitología , Suelo/parasitología , Amoeba/genética , Amoeba/crecimiento & desarrollo , ADN Protozoario/genética , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , HumedalesRESUMEN
Acinetobacter baumannii is an important pathogen of nosocomial infection. Recently, a group of genes, named "gig" (for Growth in Galleria), have been identified in a contemporary multi-drug resistant clinical isolate of A. baumannii-strain AB5075. Among these so-called gig genes, gigA and gigB were found to promote antibiotic resistance, stress survival, and virulence of AB5075 by interacting with the nitrogen phosphotransferase system (PTSNtr). This study aimed to investigate the roles of gigA/gigB, which appear to comprise a stress-signaling pathway (encoding for an atypical two-component system response regulator and a predicted anti-anti-sigma factor, respectively), and the involvement of ptsP (encoding the Enzyme I component of the PTSNtr) in the growth, stress resistance, and virulence of the widely studied A. baumannii strain ATCC 17978. Genetic analyses of strains harboring mutations of gigA and gigB were performed to investigate the roles of these genes in bacterial growth, stress resistance, evading macrophage defense, and killing of Galleria mellonella larva. In contrast with findings from strain AB5075 where gigA and gigB contribute to aminoglycoside resistance, the data presented herein indicate that the loss of gigA/gigB does not impact antibiotic resistance of strain ATCC 17978. Interestingly, however, we found that deletion of gigA/gigB in the ATCC 17978 background imparts a general growth in laboratory medium and also conferred growth and replication defects within murine macrophages and an inability to kill G. mellonella larvae. Importantly, studies as well as the loss of ptsP restored the phenotypes of the gigA/gigB mutant to that of the wild-type. The data presented herein indicate that in A. baumannii ATCC 17978, the gigA/gigB genes play a key role in both growth and virulence traits, but are dispensable for other stress-resistance survival phenotypes, including aminoglycoside resistance. Our findings thus highlight several similarities and also important differences between the gigA/gigB stress-signaling pathway in two commonly studied isolates of this troublesome pathogen.
RESUMEN
Legionella pneumophila is an intracellular pathogen that infects protozoa in aquatic environments and when inhaled by susceptible human hosts replicates in alveolar macrophages and can result in the often fatal pneumonia called Legionnaires' disease. The ability of L. pneumophila to replicate within host cells requires the establishment of a specialized compartment that evades normal phagolysosome fusion called the Legionella-containing vacuole (LCV). Elucidation of the biochemical composition of the LCV and the identification of the regulatory signals sensed during intracellular replication are inherently challenging. L-Arginine is a critical nutrient in the metabolism of both prokaryotic and eukaryotic organisms. We showed that the L. pneumophila arginine repressor homolog, ArgR, is required for maximal intracellular growth in the unicellular host Acanthamoeba castellanii. In this study, we present evidence that the concentration of L-arginine in the LCV is sensed by ArgR to produce an intracellular transcriptional response. We characterized the L. pneumophila ArgR regulon by global gene expression analysis, identified genes highly affected by ArgR, showed that ArgR repression is dependent upon the presence of L-arginine, and demonstrated that ArgR-regulated genes are derepressed during intracellular growth. Additional targets of ArgR that may account for the argR mutant's intracellular multiplication defect are discussed. These results suggest that L-arginine availability functions as a regulatory signal during Legionella intracellular growth.
Asunto(s)
Arginina , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Legionella pneumophila , Proteínas Represoras/metabolismo , Vacuolas/microbiología , Acanthamoeba castellanii/microbiología , Acanthamoeba castellanii/ultraestructura , Secuencia de Aminoácidos , Animales , Arginina/metabolismo , Arginina/farmacología , Proteínas Bacterianas/genética , Línea Celular , Medios de Cultivo , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Legionella pneumophila/genética , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , Macrófagos/microbiología , Macrófagos/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Proteínas Represoras/genéticaRESUMEN
Legionella pneumophila remains an important opportunistic pathogen of human macrophages. Its more limited ability to replicate in murine macrophages has been attributed to redundant innate sensor systems that detect and effectively respond to this infection. The current studies evaluate the role of one of these innate response systems, the type I interferon (IFN-I) autocrine loop. The ability of L. pneumophila to induce IFN-I expression was found to be dependent on IRF-3, but not NF-kappaB. Secreted IFN-Is then in turn suppress the intracellular replication of L. pneumophila. Surprisingly, this suppression is mediated by a pathway that is independent of Stat1, Stat2, Stat3, but correlates with the polarization of macrophages toward the M1 or classically activated phenotype.
Asunto(s)
Inmunidad Innata , Interferón Tipo I/inmunología , Interferones/inmunología , Enfermedad de los Legionarios/inmunología , Animales , Comunicación Autocrina/inmunología , Células Cultivadas , Legionella pneumophila/fisiología , Activación de Macrófagos , Macrófagos/citología , Macrófagos/inmunología , Ratones , FN-kappa B , Factores de Transcripción STATRESUMEN
Legionella pneumophila, the causative agent of Legionnaires' disease, evades phago-lysosome fusion in mammalian and protozoan hosts to create a suitable niche for intracellular replication. To modulate vesicle trafficking pathways, L. pneumophila translocates effector proteins into eukaryotic cells through a Type IVB macro-molecular transport system called the Icm-Dot system. In this study, we employed a fluorescence-based translocation assay to show that 33 previously identified Legionella eukaryotic-like genes (leg) encode substrates of the Icm-Dot secretion system. To assess which of these proteins may contribute to the disruption of vesicle trafficking, we expressed each gene in yeast and looked for phenotypes related to vacuolar protein sorting. We found that LegC3-GFP and LegC7/YlfA-GFP caused the mis-secretion of CPY-Invertase, a fusion protein normally restricted to the yeast vacuole. We also found that LegC7/YlfA-GFP and its paralog LegC2/YlfB-GFP formed large structures around the yeast vacuole while LegC3-GFP localized to the plasma membrane and a fragmented vacuole. In mammalian cells, LegC2/YlfB-GFP and LegC7/YlfA-GFP were found within large structures that co-localized with anti-KDEL antibodies but excluded the lysosomal marker LAMP-1, similar to what is observed in Legionella-containing vacuoles. LegC3-GFP, in contrast, was observed as smaller structures which had no obvious co-localization with KDEL or LAMP-1. Finally, LegC3-GFP caused the accumulation of many endosome-like structures containing undigested material when expressed in the protozoan host Dictyostelium discoideum. Our results demonstrate that multiple Leg proteins are Icm/Dot-dependent substrates and that LegC3, LegC7/YlfA, and LegC2/YlfB may contribute to the intracellular trafficking of L. pneumophila by interfering with highly conserved pathways that modulate vesicle maturation.