Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(18): 3284-3286, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055196

RESUMEN

Nearly all neurons contain a primary cilium, but little is known about how this compartment contributes to neuromodulatory signaling. In a new study, Sheu et al. use cutting-edge electron microscopy and fluorescence imaging techniques to reveal a new type of synapse that enables chemical transmission between serotonergic axons and the primary cilia of hippocampal neurons.


Asunto(s)
Cilios , Neuronas/fisiología , Sinapsis , Hipocampo/citología , Microscopía Electrónica
2.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482083

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Asunto(s)
Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Degeneración Nerviosa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Proteína C9orf72/genética , Muerte Celular , Células Cultivadas , Corteza Cerebral/patología , Cromatina/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Drosophila , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Estabilidad Proteica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
3.
Cell ; 175(7): 1811-1826.e21, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30503207

RESUMEN

Nervous system function depends on proper myelination for insulation and critical trophic support for axons. Myelination is tightly regulated spatially and temporally, but how it is controlled molecularly remains largely unknown. Here, we identified key molecular mechanisms governing the regional and temporal specificity of CNS myelination. We show that transcription factor EB (TFEB) is highly expressed by differentiating oligodendrocytes and that its loss causes precocious and ectopic myelination in many parts of the murine brain. TFEB functions cell-autonomously through PUMA induction and Bax-Bak activation to promote programmed cell death of a subset of premyelinating oligodendrocytes, allowing selective elimination of oligodendrocytes in normally unmyelinated brain regions. This pathway is conserved across diverse brain areas and is critical for myelination timing. Our findings define an oligodendrocyte-intrinsic mechanism underlying the spatiotemporal specificity of CNS myelination, shedding light on how myelinating glia sculpt the nervous system during development.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Encéfalo/metabolismo , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Oligodendroglía/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Encéfalo/citología , Femenino , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Neuroglía/citología , Oligodendroglía/citología , Proteínas Supresoras de Tumor/genética
4.
Cell ; 164(5): 1031-45, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26898330

RESUMEN

During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal.


Asunto(s)
Axones/patología , Neuronas/patología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Ratones , Datos de Secuencia Molecular , Degeneración Nerviosa/patología , Neuronas/metabolismo , Proteínas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteína bcl-X/metabolismo
5.
Cell ; 160(1-2): 161-76, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594179

RESUMEN

Axonal death disrupts functional connectivity of neural circuits and is a critical feature of many neurodegenerative disorders. Pathological axon degeneration often occurs independently of known programmed death pathways, but the underlying molecular mechanisms remain largely unknown. Using traumatic injury as a model, we systematically investigate mitogen-activated protein kinase (MAPK) families and delineate a MAPK cascade that represents the early degenerative response to axonal injury. The adaptor protein Sarm1 is required for activation of this MAPK cascade, and this Sarm1-MAPK pathway disrupts axonal energy homeostasis, leading to ATP depletion before physical breakdown of damaged axons. The protective cytoNmnat1/Wld(s) protein inhibits activation of this MAPK cascade. Further, MKK4, a key component in the Sarm1-MAPK pathway, is antagonized by AKT signaling, which modulates the degenerative response by limiting activation of downstream JNK signaling. Our results reveal a regulatory mechanism that integrates distinct signals to instruct pathological axon degeneration.


Asunto(s)
Axones/patología , Sistema de Señalización de MAP Quinasas , Adenosina Trifosfato/metabolismo , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Muerte Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
6.
Cell ; 159(4): 896-910, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417164

RESUMEN

The visualization of molecularly labeled structures within large intact tissues in three dimensions is an area of intense focus. We describe a simple, rapid, and inexpensive method, iDISCO, that permits whole-mount immunolabeling with volume imaging of large cleared samples ranging from perinatal mouse embryos to adult organs, such as brains or kidneys. iDISCO is modeled on classical histology techniques, facilitating translation of section staining assays to intact tissues, as evidenced by compatibility with 28 antibodies to both endogenous antigens and transgenic reporters like GFP. When applied to degenerating neurons, iDISCO revealed unexpected variability in number of apoptotic neurons within individual sensory ganglia despite tight control of total number in all ganglia. It also permitted imaging of single degenerating axons in adult brain and the first visualization of cleaved Caspase-3 in degenerating embryonic sensory axons in vivo, even single axons. iDISCO enables facile volume imaging of immunolabeled structures in complex tissues. PAPERCLIP:


Asunto(s)
Imagenología Tridimensional/métodos , Inmunohistoquímica , Animales , Embrión de Mamíferos/citología , Inmunohistoquímica/economía , Ratones , Degeneración Nerviosa/patología
7.
Cell ; 133(5): 903-15, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18510933

RESUMEN

We show that miR-1, a conserved muscle-specific microRNA, regulates aspects of both pre- and postsynaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered presynaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in presynaptic function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , MicroARNs/metabolismo , Unión Neuromuscular/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Levamisol/farmacología , MicroARNs/genética , Mutación , Agonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transcripción Genética , Proteínas de Unión al GTP rab3/metabolismo
8.
J Neurosci ; 40(28): 5402-5412, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32471877

RESUMEN

Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.


Asunto(s)
Axones/metabolismo , Caspasas/metabolismo , Tractos Piramidales/crecimiento & desarrollo , Semaforinas/metabolismo , Transducción de Señal/fisiología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Orientación del Axón/fisiología , Ratones , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Neuronas/fisiología , Tractos Piramidales/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(21): 6029-34, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162329

RESUMEN

Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Dendritas/metabolismo , Espectrina/metabolismo , Actinas/genética , Animales , Caenorhabditis elegans , Línea Celular , Membrana Celular/genética , Pollos , Citoesqueleto/genética , Dendritas/genética , Drosophila melanogaster , Ratones , Especificidad de la Especie , Espectrina/genética
10.
Curr Opin Neurol ; 31(6): 693-701, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30320612

RESUMEN

PURPOSE OF REVIEW: The current review analyzes recent findings that suggest that axon degeneration is a druggable process in the treatment of neurodegenerative disorders and a subset of traumas. RECENT FINDINGS: Emerging evidence reveals that axon degeneration is an active and regulated process in the early progression of some neurodegenerative diseases and acute traumas, which is orchestrated through a combination of axon-intrinsic and somatically derived signaling events. The identification of these pathways has presented appealing drug targets whose specificity for the nervous system and phenotypes in mouse models offers significant clinical opportunity. SUMMARY: As the biology of axon degeneration becomes clear, so too has the realization that the pathways driving axon degeneration overlap in part with those that drive neuronal apoptosis and, importantly, axon regeneration. Axon-specific disorders like those seen in CIPN, where injury signaling to the nucleus is not a prominent feature, have been shown to benefit from disruption of Sarm1. In injury and disease contexts, where involvement of somatic events is prominent, inhibition of the MAP Kinase DLK exhibits promise for neuroprotection. Here, however, interfering with somatic signaling may preclude the ability of an axon or a circuit to regenerate or functionally adapt following acute injuries.


Asunto(s)
Axones/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/terapia , Modelos Animales de Enfermedad , Humanos , Regeneración Nerviosa , Transducción de Señal
11.
J Neurosci ; 34(19): 6438-47, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806670

RESUMEN

In the developing brain, initial neuronal projections are formed through extensive growth and branching of developing axons, but many branches are later pruned to sculpt the mature pattern of connections. Despite its widespread occurrence, the mechanisms controlling pruning remain incompletely characterized. Based on pharmacological and biochemical analysis in vitro and initial genetic analysis in vivo, prior studies implicated a pathway involving binding of the Amyloid Precursor Protein (APP) to Death Receptor 6 (DR6) and activation of a downstream caspase cascade in axonal pruning. Here, we further test their involvement in pruning in vivo and their mechanism of action through extensive genetic and biochemical analysis. Genetic deletion of DR6 was previously shown to impair pruning of retinal axons in vivo. We show that genetic deletion of APP similarly impairs pruning of retinal axons in vivo and provide evidence that APP and DR6 act cell autonomously and in the same pathway to control pruning. Prior analysis had suggested that ß-secretase cleavage of APP and binding of an N-terminal fragment of APP to DR6 is required for their actions, but further genetic and biochemical analysis reveals that ß-secretase activity is not required and that high-affinity binding to DR6 requires a more C-terminal portion of the APP ectodomain. These results provide direct support for the model that APP and DR6 function cell autonomously and in the same pathway to control pruning in vivo and raise the possibility of alternate mechanisms for how APP and DR6 control pruning.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Precursor de Proteína beta-Amiloide/genética , Axones/fisiología , Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Recuento de Células , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Inmunohistoquímica , Inmunoprecipitación , Ratones , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Unión Proteica , ARN Interferente Pequeño/genética , Células Ganglionares de la Retina/fisiología , Células Receptoras Sensoriales/fisiología
12.
J Cell Biol ; 223(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091013

RESUMEN

Metabolic plasticity of neurons ensures their activity continues when glucose is limited. Walsh and Simon discuss new work by Ashrafi and colleagues (https://doi.org/10.1083/jcb.202305048) that finds Sirtuin 3 directs local metabolic adaptation at synapses during sustained glucose deprivation.


Asunto(s)
Sirtuina 3 , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sinapsis/metabolismo , Neuronas/metabolismo , Glucosa/metabolismo , Mitocondrias
13.
Cell Rep ; 43(2): 113721, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310514

RESUMEN

Inflammation is closely associated with many neurodegenerative disorders. Yet, whether inflammation causes, exacerbates, or responds to neurodegeneration has been challenging to define because the two processes are so closely linked. Here, we disentangle inflammation from the axon damage it causes by individually blocking cytotoxic T cell function and axon degeneration. We model inflammatory damage in mouse skin, a barrier tissue that, despite frequent inflammation, must maintain proper functioning of a dense array of axon terminals. We show that sympathetic axons modulate skin inflammation through release of norepinephrine, which suppresses activation of γδ T cells via the ß2 adrenergic receptor. Strong inflammatory stimulation-modeled by application of the Toll-like receptor 7 agonist imiquimod-causes progressive γδ T cell-mediated, Sarm1-dependent loss of these immunosuppressive sympathetic axons. This removes a physiological brake on T cells, initiating a positive feedback loop of enhanced inflammation and further axon damage.


Asunto(s)
Dermatitis , Inflamación , Animales , Ratones , Retroalimentación , Axones , Terminales Presinápticos
14.
J Neurosci ; 32(49): 17540-53, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23223278

RESUMEN

Axon degeneration initiated by trophic factor withdrawal shares many features with programmed cell death, but many prior studies discounted a role for caspases in this process, particularly Caspase-3. Recently, Caspase-6 was implicated based on pharmacological and knockdown evidence, and we report here that genetic deletion of Caspase-6 indeed provides partial protection from degeneration. However, we find at a biochemical level that Caspase-6 is activated effectively only by Caspase-3 but not other "upstream" caspases, prompting us to revisit the role of Caspase-3. In vitro, we show that genetic deletion of Caspase-3 is fully protective against sensory axon degeneration initiated by trophic factor withdrawal, but not injury-induced Wallerian degeneration, and we define a biochemical cascade from prosurvival Bcl2 family regulators to Caspase-9, then Caspase-3, and then Caspase-6. Only low levels of active Caspase-3 appear to be required, helping explain why its critical role has been obscured in prior studies. In vivo, Caspase-3 and Caspase-6-knockout mice show a delay in developmental pruning of retinocollicular axons, thereby implicating both Caspase-3 and Caspase-6 in axon degeneration that occurs as a part of normal development.


Asunto(s)
Axones/enzimología , Caspasa 3/fisiología , Caspasa 6/fisiología , Degeneración Nerviosa/enzimología , Colículos Superiores/crecimiento & desarrollo , Animales , Axones/patología , Axones/ultraestructura , Caspasa 3/genética , Caspasa 6/genética , Células Cultivadas , Activación Enzimática/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular/métodos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Factor de Crecimiento Nervioso/efectos adversos , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Células Receptoras Sensoriales/enzimología , Células Receptoras Sensoriales/patología , Transducción de Señal/genética , Transducción de Señal/fisiología , Colículos Superiores/enzimología , Degeneración Walleriana/enzimología , Degeneración Walleriana/genética , Degeneración Walleriana/patología , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/fisiología
15.
J Phys Chem B ; 127(50): 10861-10870, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38064590

RESUMEN

Temperature fields provide a noninvasive approach for manipulating individual macromolecules in solution. Utilizing thermophoresis and other secondary effects resulting from the inhomogeneous distribution of crowding agents, one may gain valuable insights into the interactions of molecular mixtures. In this report, we examine the steady-state concentration distribution and dynamics of DNA molecules in a poly(ethylene glycol) (PEG)/water solution when exposed to localized temperature gradients generated by optical heating of a thin chrome layer at a liquid-solid boundary. This allowed us to experimentally investigate the interplay between DNA thermophoresis and PEG-induced entropic depletion effects. Our quantitative analysis demonstrates that the depletion effects dominate over DNA thermophoresis, causing the DNA polymers to migrate toward the heat source. Additionally, we explore the transient stretching of individual DNA molecules in thermally induced PEG gradients and estimate the contributing forces.


Asunto(s)
ADN , Polietilenglicoles , Temperatura , Polímeros , Entropía
16.
PLoS One ; 16(3): e0247943, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33684164

RESUMEN

BACKGROUND: Gender and health are two factors that shape the quality of life in old age. Previous available literature established an associaton between various demographic and socio-economic factors with the health and well-being of older adults in India; however, the influence of childless aged is neglected. Therefore, the study examined the gender differential in psychological health and subjective well-being among older adults, focusing on childless older adults. METHODOLOGY: This study utilized data from Building a Knowledge Base on Population Aging in India (BKPAI). Psychological health and subjective well-being were examined for 9541 older adults aged 60 years & above. Descriptive statistics and bivariate analysis were used to find the preliminary results. Further, multivariate analysis has been done to fulfill the objective of the study. RESULTS: Around one-fifth (21.2%) of the men reported low psychological health, whereas around one-fourth (25.5%) of the women reported low psychological health. Further, around 24 per cent of men and 29 per cent of women reported low subjective well-being. Results found that low psychological well-being (OR = 1.87, C.I. = 1.16-3.01), as well as low subjective well-being (OR = 1.78, C.I. = 1.15-2.76), was higher in childless older women than in childless older men. Higher education, community involvement, good self-rated health, richest wealth quintile, and residing in urban areas significantly decrease the odds of low subjective well-being and low psychological well-being among older adults. CONCLUSION: There is a need to improve older adults' psychological health and subjective well-being through expanded welfare provisions, especially for childless older adults. Moreover, there is an immediate requirement to cater to the needs of poor and uneducated older adults.


Asunto(s)
Actividades Cotidianas , Salud Mental , Calidad de Vida , Caracteres Sexuales , Anciano , Anciano de 80 o más Años , Femenino , Humanos , India , Masculino , Persona de Mediana Edad
17.
Dev Cell ; 56(13): 1900-1916.e5, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34197726

RESUMEN

Stem cells (SCs) play a key role in homeostasis and repair. While many studies have focused on SC self-renewal and differentiation, little is known regarding the molecular mechanism regulating SC elimination and compensation upon loss. Here, we report that Caspase-9 deletion in hair follicle SCs (HFSCs) attenuates the apoptotic cascade, resulting in significant temporal delays. Surprisingly, Casp9-deficient HFSCs accumulate high levels of cleaved caspase-3 and are improperly cleared due to an essential caspase-3/caspase-9 feedforward loop. These SCs are retained in an apoptotic-engaged state, serving as mitogenic signaling centers by continuously releasing Wnt3 and instructing proliferation. Investigating the underlying mechanism, we reveal a caspase-3/Dusp8/p38 module responsible for Wnt3 induction, which operates in both normal and Casp9-deleted HFSCs. Notably, Casp9-deleted mice display accelerated wound repair and de novo hair follicle regeneration. Taken together, we demonstrate that apoptotic cells represent a dynamic SC niche, from which emanating signals drive SC proliferation and tissue regeneration.


Asunto(s)
Caspasa 3/genética , Caspasa 9/genética , Fosfatasas de Especificidad Dual/genética , Regeneración/genética , Proteína Wnt3/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Nicho de Células Madre/genética , Células Madre/metabolismo , Cicatrización de Heridas/genética
18.
Dev Cell ; 56(7): 976-984.e3, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33823136

RESUMEN

Axon remodeling through sprouting and pruning contributes to the refinement of developing neural circuits. A prominent example is the pruning of developing sensory axons deprived of neurotrophic support, which is mediated by a caspase-dependent (apoptotic) degeneration process. Distal sensory axons possess a latent apoptotic pathway, but a cell body-derived signal that travels anterogradely down the axon is required for pathway activation. The signaling mechanisms that underlie this anterograde process are poorly understood. Here, we show that the tumor suppressor P53 is required for anterograde signaling. Interestingly loss of P53 blocks axonal but not somatic (i.e., cell body) caspase activation. Unexpectedly, P53 does not appear to have an acute transcriptional role in this process and instead appears to act in the cytoplasm to directly activate the mitochondrial apoptotic pathway in axons. Our data support the operation of a cytoplasmic role for P53 in the anterograde death of developing sensory axons.


Asunto(s)
Axones/fisiología , Células Receptoras Sensoriales/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Axones/enzimología , Axones/metabolismo , Caspasas/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Ratones , Dominios Proteicos , Células Receptoras Sensoriales/enzimología , Células Receptoras Sensoriales/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteína bcl-X/antagonistas & inhibidores
19.
Elife ; 82019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042147

RESUMEN

Axon degeneration sculpts neuronal connectivity patterns during development and is an early hallmark of several adult-onset neurodegenerative disorders. Substantial progress has been made in identifying effector mechanisms driving axon fragmentation, but less is known about the upstream signaling pathways that initiate this process. Here, we investigate the behavior of the actin-spectrin-based Membrane-associated Periodic Skeleton (MPS), and effects of actin and spectrin manipulations in sensory axon degeneration. We show that trophic deprivation (TD) of mouse sensory neurons causes a rapid disassembly of the axonal MPS, which occurs prior to protein loss and independently of caspase activation. Actin destabilization initiates TD-related retrograde signaling needed for degeneration; actin stabilization prevents MPS disassembly and retrograde signaling during TD. Depletion of ßII-spectrin, a key component of the MPS, suppresses retrograde signaling and protects axons against degeneration. These data demonstrate structural plasticity of the MPS and suggest its potential role in early steps of axon degeneration.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Degeneración Nerviosa , Células Receptoras Sensoriales/metabolismo , Espectrina/metabolismo , Animales , Células Cultivadas , Ratones , Células Receptoras Sensoriales/patología , Transducción de Señal
20.
Neuron ; 103(3): 412-422.e4, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31221560

RESUMEN

Selective synaptic and axonal degeneration are critical aspects of both brain development and neurodegenerative disease. Inhibition of caspase signaling in neurons is a potential therapeutic strategy for neurodegenerative disease, but no neuron-specific modulators of caspase signaling have been described. Using a mass spectrometry approach, we discovered that RUFY3, a neuronally enriched protein, is essential for caspase-mediated degeneration of TRKA+ sensory axons in vitro and in vivo. Deletion of Rufy3 protects axons from degeneration, even in the presence of activated CASP3 that is competent to cleave endogenous substrates. Dephosphorylation of RUFY3 at residue S34 appears required for axon degeneration, providing a potential mechanism for neurons to locally control caspase-driven degeneration. Neuronally enriched RUFY3 thus provides an entry point for understanding non-apoptotic functions of CASP3 and a potential target to modulate caspase signaling specifically in neurons for neurodegenerative disease.


Asunto(s)
Axones/patología , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/fisiología , Animales , Axones/enzimología , Caspasa 3/fisiología , Células Cultivadas , Proteínas del Citoesqueleto , Activación Enzimática , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ratones , Ratones Noqueados , Degeneración Nerviosa/enzimología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Fosforilación , Procesamiento Proteico-Postraduccional , Receptor trkA/fisiología , Células Receptoras Sensoriales/fisiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA