Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2402114, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989698

RESUMEN

Designing effective antifog coatings poses challenges in resisting physical and chemical damage, with persistent susceptibility to decomposition in aggressive environments. As their robustness is dictated by physicochemical structural features, precise control through unique fabrication strategies is crucial. To address this challenge, a novel method for crafting nanoscale antifog films with simultaneous directional growth and cross-linking is presented, utilizing solid-state continuous assembly of polymers via ring-opening metathesis polymerization (ssCAPROMP). A new amphiphilic copolymer (specified as macrocross-linker) is designed by incorporating polydimethylsiloxane, poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride (PMETAC), and polymerizable norbornene (NB) pendant groups, allowing ssCAPROMP to produce antifog films under ambient conditions. This novel approach results in distinctive surface and molecular characteristics. Adjusting water-absorption and nanoscale assembly parameters produced ultra-thin (≤100 nm) antifog films with enhanced durability, particularly against strong acidic and alkaline environments, surpassing commercial antifog glasses. Thickness loss analysis against external disturbances further validated the stable surface-tethered chemistries introduced through ssCAPROMP, even with the incorporation of minimal content of cross-linkable NB moieties (5 mol%). Additionally, a potential zwitter-wettability mechanism elucidates antifog observations. This work establishes a unique avenue for exploring nanoengineered antifog coatings through facile and robust surface chemistries.

2.
Chemistry ; 30(49): e202401728, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888459

RESUMEN

Transitioning towards a circular economy, extensive research has focused on dynamic covalent bonds (DCBs) to pave the way for more sustainable materials. These bonds enable debonding and rebonding on demand, as well as facilitating end-of-life recycling. Acylhydrazone/hydrazone chemistry offers a material with high stability under neutral and basic conditions making it a promising candidate for materials research, though the material is susceptible to acid degradation. However, this degradation under acidic conditions can be exploited, making it widely applicable in self-healing and biomedical fields, with potential for reprocessing and recycling. This review highlights studies exploring the reversibility of acylhydrazone/hydrazone bonds in various polymers, altering their properties, and utilizing them in applications such as self-healing, reprocessing, and recycling. The review also focuses on how the mechanical properties are affected by the presence of dynamic linkages, and methods to improve the mechanical performance.

3.
ACS Nano ; 18(2): 1404-1419, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38127731

RESUMEN

This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.


Asunto(s)
Nanoestructuras , Infecciones por Paramyxoviridae , Humanos , Silicio , Virus de la Parainfluenza 3 Humana , Antivirales
4.
ACS Appl Mater Interfaces ; 15(5): 7454-7465, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36708328

RESUMEN

Ice build-up on solid surfaces causes significant economic losses for a range of industries. One solution to this problem is the development of coatings with low ice adhesion strength. Amphiphilic poly(ionic liquid) (PIL)-based surfaces have been recently reported for antifogging/antifrosting applications. However, they have possible anti-icing properties through lowering the ice adhesion strength that have yet to be reported. Herein, we designed well-defined triblock copolymers composed of a polydimethylsiloxane component coupled with PIL segments of poly([2 (methacryloyloxy)ethyl] trimethylammonium chloride) (PMETAC), which were subsequently UV-cured with an oligo(ethylene glycol) dimethacrylate (OEGDMA) cross-linker. The structure-property relationships of the resultant semi-interpenetrating polymer networks (SIPNs) were investigated by varying the counterion (i.e., trimethylammonium bis(trifluoromethanesulfonyl)imide (TFSI-)) and the content of the PIL segments and cross-linker. An ice adhesion strength as low as 13.3 ± 8.6 kPa was observed for the coating containing 12.5 wt % of PMETAC segment and 5 wt % of OEGDMA, which is one of the lowest values reported so far for the amphiphilic coatings. Characterization of the coatings in terms of surface features, wettability, and hydration states have enabled the elucidation of different deicing mechanisms. Self-lubrication due to the existence of nonfreezable bound water led to the obtained low ice adhesion strength. This work offers a new approach for the exploration of PIL-based icephobic coatings for practical applications.

5.
Langmuir ; 26(11): 9023-31, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20155983

RESUMEN

A series of surfactants were designed and synthesized for use as clay modification reagents to investigate the impact of their chemical structure on the nanocomposites morphology obtained following polymerization. The behavior of the surfactant-modified clays at three different stages were investigated: after ion exchange, following dispersion in styrene monomer, and once polymerization was complete. The propensity of the styrene monomer to swell the surfactant-modified clay was observed to be a useful indicator of compatibility and predictor of the resultant polystyrene nanocomposite morphology which was directly observed using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (TEM). It was found that the key components of surfactant design driving exfoliated morphologies were (1) the position of the ammonium group, (2) the inclusion of a polymerizable group, (3) the solubility of the surfactant in the monomer, (4) the length of the alkyl chain, and (5) sufficient concentration of surfactant used to exchange the clay. This understanding should lead to better design of clay modifications for use in polymer nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA