RESUMEN
Targeted delivery of immunomodulators to the lymphatic system has the potential to enhance therapeutic efficacy by increasing colocalization of drugs with immune targets such as lymphocytes. A triglyceride (TG)-mimetic prodrug strategy has been recently shown to enhance the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA), via incorporation into the intestinal TG deacylation-reacylation and lymph lipoprotein transport pathways. In the current study, a series of structurally related TG prodrugs of MPA were examined to optimize structure-lymphatic transport relationships for lymph-directing lipid-mimetic prodrugs. MPA was conjugated to the sn-2 position of the glyceride backbone of the prodrugs using linkers of different chain length (5-21 carbons) and the effect of methyl substitutions at the alpha and/or beta carbons to the glyceride end of the linker was examined. Lymphatic transport was assessed in mesenteric lymph duct cannulated rats, and drug exposure in lymph nodes was examined following oral administration to mice. Prodrug stability in simulated intestinal digestive fluid was also evaluated. Prodrugs with straight chain linkers were relatively unstable in simulated intestinal fluid; however, co-administration of lipase inhibitors (JZL184 and orlistat) was able to reduce instability and increase lymphatic transport (2-fold for a prodrug with a 6-carbon spacer, i.e., MPA-C6-TG). Methyl substitutions to the chain resulted in similar trends in improving intestinal stability and lymphatic transport. Medium- to long-chain spacers (C12, C15) between MPA and the glyceride backbone were most effective in promoting lymphatic transport, consistent with increases in lipophilicity. In contrast, short-chain (C6-C10) linkers appeared to be too unstable in the intestine and insufficiently lipophilic to associate with lymph lipid transport pathways, while very long-chain (C18, C21) linkers were also not preferred, likely as a result of increases in molecular weight reducing solubility or permeability. In addition to more effectively promoting drug transport into mesenteric lymph, TG-mimetic prodrugs based on a C12 linker resulted in marked increases (>40 fold) in the exposure of MPA in the mesenteric lymph nodes in mice when compared to administration of MPA alone, suggesting that optimizing prodrug design has the potential to provide benefit in targeting and modulating immune cells.
Asunto(s)
Profármacos , Ratas , Ratones , Animales , Profármacos/química , Triglicéridos , Ácido Micofenólico/metabolismo , Ganglios Linfáticos/metabolismo , Intestinos , Glicéridos , Factores Inmunológicos/farmacología , Factores Inmunológicos/metabolismo , Adyuvantes Inmunológicos , Administración OralRESUMEN
Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment.
Asunto(s)
Descubrimiento de Drogas/métodos , VIH-1/enzimología , Profármacos/aislamiento & purificación , Inhibidores de la Transcriptasa Inversa/aislamiento & purificación , Inhibidores de la Transcriptasa Inversa/farmacología , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Espectroscopía de Resonancia Magnética , Profármacos/análisis , Inhibidores de la Transcriptasa Inversa/análisis , Ribonucleasa H/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas , Replicación Viral/efectos de los fármacosRESUMEN
We describe a general approach to determine the binding pose of small molecules in weakly bound protein-ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met εCH3 assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-13C,15N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein-ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.
Asunto(s)
Ligandos , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Sitios de Unión , Marcaje Isotópico , Espectroscopía de Resonancia Magnética/métodos , Metales/química , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica , Protones , SolubilidadRESUMEN
In previous studies, a triglyceride (TG) mimetic prodrug of the model immunomodulator mycophenolic acid (MPA) was shown to significantly enhance lymphatic transport of MPA-related species in the rat. The rat gastrointestinal tract, however, is somewhat different from that in higher order species such as dogs and humans and may underestimate lymphatic transport. Here the effectiveness of the prodrug strategy has been examined in conscious greyhound dogs, the GI physiology of which is more representative of that in humans. The bioavailability and lymphatic transport of free MPA and total MPA related materials were examined following oral administration of the parent drug (MPA) and the prodrug (2-MPA-TG) to both thoracic lymph duct cannulated and intact (noncannulated) greyhound dogs. The enrichment of free MPA in lymph nodes and lymph-derived lymphocytes was also determined to examine the efficiency of drug targeting to potential sites of action within the lymph. Via biochemical integration into a series of site-specific metabolic processes, the prodrug markedly increased (288-fold) lymphatic transport of total MPA related material (present as re-esterified 2-MPA-TG) when compared to the parent MPA and the extent of lymphatic transport was significantly greater in the dog (36.4% of the dose recovered in lymph) when compared to the previous data in the rat (13.4% of the dose). Conversion from 2-MPA-TG derivatives to parent MPA occurred in vivo, resulting in a marked increase in MPA concentrations in lymph nodes (5-6-fold) and lymph lymphocytes (21-fold), when compared to animals administered the parent drug. In conclusion, the data demonstrate that the TG prodrug of MPA facilitates efficient delivery of MPA to the lymphatic system in dogs and suggest that the TG prodrug strategy may more effectively facilitate targeted delivery in large animals than in rats.
Asunto(s)
Linfocitos/metabolismo , Ácido Micofenólico/metabolismo , Profármacos/metabolismo , Triglicéridos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Perros , Humanos , Ganglios Linfáticos/metabolismo , Masculino , Espectrometría de Masas en TándemRESUMEN
First-pass hepatic metabolism can significantly limit oral drug bioavailability. Drug transport from the intestine through the lymphatic system, rather than the portal vein, circumvents first-pass metabolism. However, the majority of drugs do not have the requisite physicochemical properties to facilitate lymphatic access. Herein, we describe a prodrug strategy that promotes selective transport through the intestinal lymph vessels and subsequent release of drug in the systemic circulation, thereby enhancing oral bioavailability. Using testosterone (TST) as a model high first-pass drug, glyceride-mimetic prodrugs incorporating self-immolative (SI) spacers, resulted in remarkable increases (up to 90-fold) in TST plasma exposure when compared to the current commercial product testosterone undecanoate (TU). This approach opens new opportunities for the effective development of drugs where oral delivery is limited by first-pass metabolism and provides a new avenue to enhance drug targeting to intestinal lymphoid tissue.
Asunto(s)
Glicéridos/química , Sistema Linfático/metabolismo , Profármacos/química , Administración Oral , Animales , Disponibilidad Biológica , Glicéridos/administración & dosificación , Glicéridos/metabolismo , Humanos , Profármacos/administración & dosificación , Profármacos/metabolismoRESUMEN
PURPOSE: Recent studies have demonstrated the potential for a triglyceride (TG) mimetic prodrug to promote the delivery of mycophenolic acid (MPA) to the lymphatic system. Here, the metabolic pathways that facilitate the lymphatic transport of the TG prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) were examined to better inform the design of next generation prodrugs. METHODS: In vitro hydrolysis experiments in simulated intestinal conditions and in vivo rat lymphatic transport experiments were conducted in the presence and absence of orlistat and A922500 (inhibitors of lipolysis and TG re-esterification, respectively), to evaluate the importance of 2-MPA-TG digestion and re-esterification of 2-MPA-MG (the 2-monoglyceride derivative) in promoting lymphatic transport. RESULTS: 2-MPA-TG was rapidly hydrolysed to 2-MPA-MG on incubation with fresh bile and pancreatic fluid (BPF), but not in simulated gastric fluid, heat-inactivated BPF or BPF + orlistat. Orlistat markedly decreased lymphatic transport and systemic exposure of 2-MPA-TG derivatives suggesting that inhibition of pancreatic lipase hindered luminal digestion and absorption of the prodrug. A922500 also significantly decreased lymphatic transport of 2-MPA-TG but redirected MPA to the portal blood, suggesting that hindered re-acylation of 2-MPA-MG resulted in intracellular degradation. CONCLUSION: Incorporation into TG deacylation-reacylation pathways is a critical determinant of the utility of lymph directed TG-mimetic prodrugs.
Asunto(s)
Linfa/metabolismo , Ácido Micofenólico/análogos & derivados , Profármacos/farmacocinética , Triglicéridos/farmacocinética , Acilación , Animales , Bilis/metabolismo , Digestión , Hidrólisis , Masculino , Ácido Micofenólico/metabolismo , Ácido Micofenólico/farmacocinética , Profármacos/metabolismo , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismoRESUMEN
The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent. Thus DsbA is a critical mediator of virulence and inhibitors may act as antivirulence agents. Biophysical screening has been employed to identify fragments that bind to DsbA from Escherichia coli. Elaboration of one of these fragments produced compounds that inhibit DsbA activity in vitro. In cell-based assays, the compounds inhibit bacterial motility, but have no effect on growth in liquid culture, which is consistent with selective inhibition of DsbA. Crystal structures of inhibitors bound to DsbA indicate that they bind adjacent to the active site. Together, the data suggest that DsbA may be amenable to the development of novel antibacterial compounds that act by inhibiting bacterial virulence.
Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Proteína Disulfuro Isomerasas/metabolismoRESUMEN
We have determined the structure of the human integrin α1I domain bound to a triple-helical collagen peptide. The structure of the α1I-peptide complex was investigated using data from NMR, small angle x-ray scattering, and size exclusion chromatography that were used to generate and validate a model of the complex using the data-driven docking program, HADDOCK (High Ambiguity Driven Biomolecular Docking). The structure revealed that the α1I domain undergoes a major conformational change upon binding of the collagen peptide. This involves a large movement in the C-terminal helix of the αI domain that has been suggested to be the mechanism by which signals are propagated in the intact integrin receptor. The structure suggests a basis for the different binding selectivity observed for the α1I and α2I domains. Mutational data identify residues that contribute to the conformational change observed. Furthermore, small angle x-ray scattering data suggest that at low collagen peptide concentrations the complex exists in equilibrium between a 1:1 and 2:1 α1I-peptide complex.
Asunto(s)
Colágeno/química , Integrina alfa1/química , Péptidos/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Humanos , Integrina alfa1/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
Disulfide bond protein A (DsbA) is an oxidoreductase enzyme that catalyzes the formation of disulfide bonds in Gram-negative bacteria. In Escherichia coli, DsbA (EcDsbA) is essential for bacterial virulence, thus inhibitors have the potential to act as antivirulence agents. A fragment-based screen was conducted against EcDsbA and herein we describe the development of a series of compounds based on a phenylthiophene hit identified from the screen. A novel thiol reactive and "clickable" ethynylfluoromethylketone was designed for reaction with azide-functionalized fragments to enable rapid and versatile attachment to a range of fragments. The resulting fluoromethylketone conjugates showed selectivity for reaction with the active site thiol of EcDsbA, however unexpectedly, turnover of the covalent adduct was observed. A mechanism for this turnover was investigated and proposed which may have wider ramifications for covalent reactions with dithiol-disulfide oxidoreducatases.
Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Cetonas , Escherichia coli/enzimología , Escherichia coli/efectos de los fármacos , Cetonas/química , Cetonas/farmacología , Cetonas/síntesis química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Especificidad por Sustrato , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis químicaRESUMEN
We have used virtual screening to develop models for the binding of aryl substituted heterocycles to p38α MAPK. Virtual screening was conducted on a number of p38α MAPK crystal structures using a library of 46 known p38α MAPK inhibitors containing a heterocyclic core substituted by pyridine and fluorophenyl rings (structurally related to SB203580) and a set of decoy compounds. Multiple protonation states and tautomers of active and decoy compounds were considered. Each docking model was evaluated using receiver operating characteristic (ROC) curves and enrichment factors. The two best performing single crystal structures were found to be 1BL7 and 2EWA, with enrichment factors of 14.1 and 13.0 at 2% of the virtual screen respectively. Ensembles of up to four receptors of similar conformations were generated, generally giving good or very good performances with high ROC AUCs and good enrichment. The 1BL7-2EWA ensemble was able to outperform each of its constituent receptors and gave high enrichment factors of 17.3, 12.0, 8.0 at 2, 5 and 10% respectively, of the virtual screen. A ROC AUC of 0.94 was obtained for this ensemble. This method may be applied to other proteins where there are a large number of inhibitor classes with different binding site conformations.
Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Dominio Catalítico , Ligandos , Modelos Moleculares , Unión Proteica , Curva ROCRESUMEN
Stinging nettle root and leaf extracts were tested for their effect on prostatic smooth muscle contractility. Root extract did not affect electrical field stimulation induced-nerve mediated contractions of isolated rat prostates. On the other hand, leaf extract attenuated electrical field stimulation-induced contractions at all frequencies. Similarly, contractions elicited by exogenous administration of ATP and αß-methylene ATP were inhibited by leaf extract, whereas contractions elicited by exogenous administration of noradrenaline or acetylcholine were unaffected. The active component was present within the aqueous phase of the leaf extract. In mouse mating studies, stinging nettle leaf extract (50 mg p.o. daily) reduced male fertility by 53% compared to vehicle-treated male mice. Cardiovascular parameters were unaffected by administration of stinging nettle leaf extract (p ≥ 0.057). Treated mice exhibited normal mating behaviour. Bladder and testes weighed less in stinging nettle leaf extract treated mice. All other organs and total body weight were unaffected. It is concluded that stinging nettle leaf extract reduces contractility of genitourinary smooth muscle by acting as an antagonist at postjunctional P2X1-purinoceptors. These data indicates that blocking sperm transport through pharmacological blockade of P2X1-purinoceptors via oral administration is consistent with an effective and convenient biological strategy male contraception.
Asunto(s)
Urtica dioica , Adenosina Trifosfato , Animales , Fertilidad , Masculino , Ratones , Extractos Vegetales/farmacología , Antagonistas del Receptor Purinérgico P2 , Ratas , Receptores Purinérgicos , Receptores Purinérgicos P2 , SemillasRESUMEN
[This corrects the article DOI: 10.3389/fphar.2022.879660.].
RESUMEN
Buprenorphine (BUP) is a potent opioid analgesic that is widely used for severe pain management and opioid replacement therapy. The oral bioavailability of BUP, however, is significantly limited by first-pass metabolism. Previous studies have shown that triglyceride (TG) mimetic prodrugs of the steroid hormone testosterone circumvent first-pass metabolism by directing drug transport through the intestinal lymphatics, bypassing the liver. The current study expanded this prodrug strategy to BUP. Here different self-immolative (SI) linkers were evaluated to conjugate BUP to the 2 position of the TG backbone via the phenol group on BUP. The SI linkers were designed to promote drug release in plasma. Lipolysis of the prodrug in the intestinal tract was examined via incubation with simulated intestinal fluid (SIF), and potential for parent drug liberation in the systemic circulation was evaluated via incubation in rat plasma. Lymphatic transport and bioavailability studies were subsequently conducted in mesenteric lymph duct or carotid artery-cannulated rats, respectively. TG prodrug derivatives were efficiently transported into the lymphatics (up to 45% of the dose in anaesthetised rats, vs. less than 0.1% for BUP). Incorporation of the SI linkers facilitated BUP release from the prodrugs in the plasma and in concert with high lymphatic transport led to a marked enhancement in oral bioavailability (up to 22-fold) compared to BUP alone. These data suggest the potential to develop an orally bioavailable BUP product which may have advantages with respect to patient preference when compared to current sublingual, transdermal patch or parenteral formulations.
RESUMEN
BACKGROUND: To identify the bioactive components of saw palmetto ethanol extracts that affect contractility in the rat prostate gland. METHODS: A commercially available saw palmetto ethanol extract was lyophilized then subjected to fractionation using silica gel column chromatography. Composition of fractions was assessed by proton nuclear magnetic resonance ((1)H NMR) spectroscopy and mass spectrometry (MS). Contractile activity of these fractions was evaluated pharmacologically using isolated preparations of rat prostate gland and compared to the activity of crude ethanol extract. RESULTS: Saw palmetto ethanol extract caused contractions of the rat prostate gland which were consistent with indirectly acting sympathomimetic activity. Fractions resulting from chromatography produced contractions of isolated rat prostates that were similar in magnitude to the contractions produced by the crude extracts. Analysis of NMR and mass spectra revealed that this bioactivity was due to tyramine in the active fraction. CONCLUSIONS: Tyramine is present in saw palmetto ethanol extracts and causes indirect α(1)-adrenoceptor mediated contractions via the release of noradrenaline from sympathetic neurons. This has clinical implications, as tyramine interacts with MAO inhibitors to cause hypertensive crisis.
Asunto(s)
Contracción Muscular , Músculo Liso/efectos de los fármacos , Extractos Vegetales/farmacología , Próstata/efectos de los fármacos , Simpatomiméticos/farmacología , Tiramina/farmacología , Animales , Etanol/química , Masculino , Ratas , Ratas Sprague-Dawley , SerenoaRESUMEN
Drug delivery to the lymphatic system is gaining increasing attention, particularly in fields such as immunotherapy where drug access to lymphocytes is central to activity. We have previously described a prodrug strategy that facilitates the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA) via incorporation into intestinal triglyceride transport pathways. The current study explored a series of structurally related glyceride and phospholipid mimetic prodrugs of MPA in an attempt to enhance lymph targeting and to better elucidate the design criteria for lipid mimetic prodrugs. MPA was conjugated to a glyceride or phospholipid backbone at various positions using different spacers employing ester, ether, carbonate and amide bonds. Patterns of prodrug hydrolysis were evaluated in rat digestive fluid, and lymphatic transport and plasma pharmacokinetics were assessed in lymph duct cannulated rats. Prodrugs with different spacers between MPA and the glyceride backbone resulted in up to 70-fold differences in gastrointestinal stability. MPA conjugation at the 2 position of the glyceride backbone and via an ester bond were most effective in promoting lymphatic transport. Phospholipid prodrug derivatives, or glyceride derivatives with MPA attached at the 1 position or when linked via ether, carbonate or amide bonds were poorly incorporated into lymphatic transport pathways.
Asunto(s)
Profármacos , Animales , Sistemas de Liberación de Medicamentos , Glicéridos , Linfa , Fosfolípidos , RatasRESUMEN
The mesenteric lymph nodes (MLN) are a key site for the generation of adaptive immune responses to gut-derived antigenic material and immune cells within the MLN contribute to the pathophysiology of a range of conditions including inflammatory and autoimmune diseases, viral infections, graft versus host disease and cancer. Targeting immunomodulating drugs to the MLN may thus be beneficial in a range of conditions. This paper investigates the potential benefit of targeting a model immunosuppressant drug, mycophenolic acid (MPA), to T cells in the MLN, using a triglyceride (TG) mimetic prodrug approach. We confirmed that administration of MPA in the TG prodrug form (MPA-TG), increased lymphatic transport of MPA-related species 83-fold and increased MLN concentrations of MPA >20 fold, when compared to MPA alone, for up to 4 h in mice. At the same time, the plasma exposure of MPA and MPA-TG was similar, limiting the opportunity for systemic side effects. Confocal microscopy and flow cytometry studies with a fluorescent model prodrug (Bodipy-TG) revealed that the prodrug accumulated in the MLN cortex and paracortex at 5 and 10 h following administration and was highly associated with B cells and T cells that are found in these regions of the MLN. Finally, we demonstrated that MPA-TG was significantly more effective than MPA at inhibiting CD4+ and CD8+ T cell proliferation in the MLN of mice in response to an oral ovalbumin antigen challenge. In contrast, MPA-TG was no more effective than MPA at inhibiting T cell proliferation in peripheral LN when mice were challenged via SC administration of ovalbumin. This paper provides the first evidence of an in vivo pharmacodynamic benefit of targeting the MLN using a TG mimetic prodrug approach. The TG mimetic prodrug technology has the potential to benefit the treatment of a range of conditions where aberrant immune responses are initiated in gut-associated lymphoid tissues.
Asunto(s)
Profármacos , Animales , Inmunidad , Inmunomodulación , Ganglios Linfáticos , Mesenterio , Ratones , Ácido Micofenólico , TriglicéridosRESUMEN
Visceral adipose tissue (VAT) encases mesenteric lymphatic vessels and lymph nodes through which lymph is transported from the intestine and mesentery. Whether mesenteric lymphatics contribute to adipose tissue inflammation and metabolism and insulin resistance is unclear. Here we show that obesity is associated with profound and progressive dysfunction of the mesenteric lymphatic system in mice and humans. We find that lymph from mice and humans consuming a high-fat diet (HFD) stimulates lymphatic vessel growth, leading to the formation of highly branched mesenteric lymphatic vessels that 'leak' HFD-lymph into VAT and, thereby, promote insulin resistance. Mesenteric lymphatic dysfunction is regulated by cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-C-VEGF receptor (R)3 signalling. Lymph-targeted inhibition of COX-2 using a glyceride prodrug approach reverses mesenteric lymphatic dysfunction, visceral obesity and inflammation and restores glycaemic control in mice. Targeting obesity-associated mesenteric lymphatic dysfunction thus represents a potential therapeutic option to treat metabolic disease.
Asunto(s)
Resistencia a la Insulina , Vasos Linfáticos/fisiopatología , Mesenterio/fisiopatología , Obesidad Abdominal/fisiopatología , Adulto , Anciano , Animales , Ciclooxigenasa 2/metabolismo , Femenino , Humanos , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Obesidad Abdominal/terapia , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/metabolismoRESUMEN
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the Mg(2+)-dependent transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HMDP), forming 6-hydroxymethyl-7,8-dihydropterin pyrophosphate, which is a critical step in the de novo folic acid-biosynthesis pathway. Diffraction-quality crystals of HPPK from the medically relevant species Staphylococcus aureus were grown in the presence of ammonium sulfate or sodium malonate and diffracted to better than 1.65 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 36.8, b = 76.6, c = 51.5 A, alpha = gamma = 90.0, beta = 100.2 degrees . The crystals contained two molecules per asymmetric unit, with a volume per protein weight (V(M)) of 2.04 A(3) Da(-1) and an estimated solvent content of 39.6%.
Asunto(s)
Difosfotransferasas/química , Staphylococcus aureus/enzimología , Cristalización , Cristalografía por Rayos XRESUMEN
Intestinal fatty acid binding protein (I-FABP) is present at high levels in the absorptive cells of the intestine (enterocytes) where it plays a role in the intracellular solubilization of fatty acids (FA). However, I-FABP has also been shown to bind to a range of non-FA ligands, including some lipophilic drug molecules, albeit with generally lower affinity than FA. The significance of these lower affinity interactions with exogenous compounds is not known. In this manuscript, we describe further characterization of drug-rat I-FABP binding interactions using a thermal-shift assay. A structural explanation of the observed affinity of rat I-FABP for different drugs based on spectroscopic data and modeling experiments is presented. In addition, immunocytochemistry has been used to probe the expression of I-FABP in a cell culture model reflective of the absorptive cells of the small intestine. Taken together, these data suggest a possible role for I-FABP in the disposition of some lipophilic drugs within the enterocyte.
Asunto(s)
Proteínas de Unión a Ácidos Grasos/química , Preparaciones Farmacéuticas/metabolismo , Animales , Sitios de Unión , Células CACO-2 , Enterocitos/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Fenofibrato/análogos & derivados , Fenofibrato/química , Fenofibrato/metabolismo , Humanos , Inmunohistoquímica , Ligandos , Microscopía Confocal , Preparaciones Farmacéuticas/química , Ratas , TemperaturaRESUMEN
At a time when the antibiotic drug discovery pipeline has stalled, antibiotic resistance is accelerating with catastrophic implications for our ability to treat bacterial infections. Globally we face the prospect of a future when common infections can once again kill. Anti-virulence approaches that target the capacity of the bacterium to cause disease rather than the growth or survival of the bacterium itself offer a tantalizing prospect of novel antimicrobials. They may also reduce the propensity to induce resistance by removing the strong selection pressure imparted by bactericidal or bacteriostatic agents. In the human pathogen Pseudomonas aeruginosa, disulfide bond protein A (PaDsbA1) plays a central role in the oxidative folding of virulence factors and is therefore an attractive target for the development of new anti-virulence antimicrobials. Using a fragment-based approach we have identified small molecules that bind to PaDsbA1. The fragment hits show selective binding to PaDsbA1 over the DsbA protein from Escherichia coli, suggesting that developing species-specific narrow-spectrum inhibitors of DsbA enzymes may be feasible. Structures of a co-complex of PaDsbA1 with the highest affinity fragment identified in the screen reveal that the fragment binds on the non-catalytic surface of the protein at a domain interface. This biophysical and structural data represent a starting point in the development of higher affinity compounds, which will be assessed for their potential as selective PaDsbA1 inhibitors.