Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Cell Res ; 411(1): 112731, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34270980

RESUMEN

Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins, and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.

2.
Exp Cell Res ; 404(1): 112601, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957118

RESUMEN

Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.


Asunto(s)
Cadherinas/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Adhesión Celular/fisiología , Supervivencia Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
4.
Eur J Med Chem ; 201: 112411, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32615502

RESUMEN

Dysregulated Histone Deacetylase (HDAC) activity across multiple human pathologies have highlighted this family of epigenetic enzymes as critical druggable targets, amenable to small molecule intervention. While efficacious, current approaches using non-selective HDAC inhibitors (HDACi) have been shown to cause a range of undesirable clinical toxicities. To circumvent this, recent efforts have focused on the design of highly selective HDACi as a novel therapeutic strategy. Beyond roles in regulating transcription, the unique HDAC6 (with two catalytic domains) regulates the deacetylation of α-tubulin; promoting growth factor-controlled cell motility, cell division, and metastatic hallmarks. Recent studies have linked aberrant HDAC6 function in various hematological cancers including acute myeloid leukaemia and multiple myeloma. Herein, we report the discovery, in vitro characterization, and biological evaluation of PTG-0861 (JG-265), a novel HDAC6-selective inhibitor with strong isozyme-selectivity (∼36× ) and low nanomolar potency (IC50 = 5.92 nM) against HDAC6. This selectivity profile was rationalized via in silico docking studies and also observed in cellulo through cellular target engagement. Moreover, PTG-0861 achieved relevant potency against several blood cancer cell lines (e.g. MV4-11, MM1S), whilst showing limited cytotoxicity against non-malignant cells (e.g. NHF, HUVEC) and CD-1 mice. In examining compound stability and cellular permeability, PTG-0861 revealed a promising in vitro pharmacokinetic (PK) profile. Altogether, in this study we identified a novel and potent HDAC6-selective inhibitor (∼4× more selective than current clinical standards - citarinostat, ricolinostat), which achieves cellular target engagement, efficacy in hematological cancer cells with a promising safety profile and in vitro PK.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Benzamidas/síntesis química , Benzamidas/metabolismo , Benzamidas/farmacocinética , Dominio Catalítico , Línea Celular Tumoral , Histona Desacetilasa 6/química , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacocinética , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/farmacocinética , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
5.
ACS Med Chem Lett ; 11(1): 56-64, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31938464

RESUMEN

The HDAC inhibitor 4-tert-butyl-N-(4-(hydroxycarbamoyl)phenyl)benzamide (AES-350, 51) was identified as a promising preclinical candidate for the treatment of acute myeloid leukemia (AML), an aggressive malignancy with a meagre 24% 5-year survival rate. Through screening of low-molecular-weight analogues derived from the previously discovered novel HDAC inhibitor, AES-135, compound 51 demonstrated greater HDAC isoform selectivity, higher cytotoxicity in MV4-11 cells, an improved therapeutic window, and more efficient absorption through cellular and lipid membranes. Compound 51 also demonstrated improved oral bioavailability compared to SAHA in mouse models. A broad spectrum of experiments, including FACS, ELISA, and Western blotting, were performed to support our hypothesis that 51 dose-dependently triggers apoptosis in AML cells through HDAC inhibition.

6.
J Pharm Biomed Anal ; 162: 60-65, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30223143

RESUMEN

Inhibition of STAT phosphorylation is recognized as a viable therapeutic strategy for disrupting tumorigenesis. Constitutive STAT phosphorylation is found with high frequency in a number of primary tumor types, while non-cancer cells exhibit low basal activity, providing an exploitable therapeutic window. STAT activation involves phosphorylation of the SH2 domain by a number of tyrosine kinases followed by STAT dimerization and translocation to the nucleus. By blocking the cognate binding site, STAT SH2-domain inhibitors can impede kinase-mediated de novo STAT phosphorylation. Assessing for inhibitors of STAT phosphorylation has previously been conducted exclusively in cellulo using Western blot analysis. However, while providing useful in cellulo efficacy, it is not possible to conclude that inhibition is due to a direct blockade of STAT protein. Here we developed a functional assay that directly reports the blockade of phosphorylation as a result of inhibitor interaction with STAT proteins. We have optimized reaction conditions for the functional assay and validated the assay against known STAT5B ligands, including peptides and small molecule inhibitors. As part of the study, we have also identified several sites of STAT5B phosphorylation by Abl kinase. This assay will serve to delineate the functional mechanism of STAT binders in vitro and deconvolute the mechanism of phospho-STAT inhibition observed in Western blot analysis.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Factor de Transcripción STAT5/metabolismo , Humanos , Cinética , Ligandos , Fosforilación , Proteínas Proto-Oncogénicas c-abl/metabolismo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA