Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(26): 12692-12697, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31182580

RESUMEN

We examine the quantum confinement in the photoemission ionization energy in air and optical band gap of carbon nanoparticles (CNPs). Premixed, stretched-stabilized ethylene flames are used to generate the CNPs reproducibly over the range of 4-23 nm in volume median diameter. The results reveal that flame-formed CNPs behave like an indirect band gap material, and that the existence of the optical band gap is attributed to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap in the polycyclic aromatic hydrocarbons comprising the CNPs. Both the ionization energy and optical band gap are found to follow closely the quantum confinement effect. The optical band gaps, measured both in situ and ex situ on the CNPs prepared in several additional flames, are consistent with the theory and the baseline data of CNPs from stretched-stabilized ethylene flames, thus indicating the observed effect to be general and that the particle size is the single most important factor governing the variation of the band gap of the CNPs studied. Cyclic voltammetry measurements and density functional theory calculations provide additional support for the quantum dot behavior observed.

2.
Sci Rep ; 14(1): 3275, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332006

RESUMEN

Spontaneous abortion is a pregnancy complication characterized by complex and multifactorial etiology. About 5% of childbearing women are globally affected by early pregnancy loss (EPL) and most of them experience recurrence (RPL). Epigenetic mechanisms and controlled inflammation are crucial for pregnancy maintenance and genetic predispositions may increase the risk affecting the maternal-fetal crosstalk. Combined analyses of global methylation, inflammation and inherited predispositions may contribute to define pregnancy loss etiopathogenesis. LINE-1 epigenetic regulation plays crucial roles during embryo implantation, and its hypomethylation has been associated with senescence and several complex diseases. By analysing a group of 230 women who have gone through pregnancy interruption and comparing those experiencing spontaneous EPL (n = 123; RPL, 54.5%) with a group of normal pregnant who underwent to voluntary interruption (VPI, n = 107), the single statistical analysis revealed significant lower (P < 0.00001) LINE-1 methylation and higher (P < 0.0001) mean cytokine levels (CKs: IL6, IL10, IL17A, IL23) in EPL. Genotyping of the following SNPs accounted for different EPL/RPL risk odds ratio: F13A1 rs5985 (OR = 0.24; 0.06-0.90); F13B rs6003 (OR = 0.23; 0.047-1.1); FGA rs6050 (OR = 0.58; 0.33-1.0); CRP rs2808635/rs876538 (OR = 0.15; 0.014-0.81); ABO rs657152 (OR = 0.48; 0.22-1.08); TP53 rs1042522 (OR = 0.54; 0.32-0.92); MTHFR rs1801133/rs1801131 (OR = 2.03; 1.2-3.47) and FGB rs1800790 (OR = 1.97; 1.01-3.87), although Bonferroni correction did not reach significant outputs. Principal Component Analysis (PCA) and logistic regression disclosed further SNPs positive/negative associations (e.g. APOE rs7412/rs429358; FGB rs1800790; CFH rs1061170) differently arranged and sorted in four significant PCs: PC1 (F13A, methylation, CKs); PC3 (CRP, MTHFR, age, methylation); PC4 (F13B, FGA, FGB, APOE, TP53, age, methylation); PC6 (F13A, CFH, ABO, MTHFR, TP53, age), yielding further statistical power to the association models. In detail, positive EPL risk association was with PC1 (OR = 1.81; 1.33-2.45; P < 0.0001) and negative associations with PC3 (OR = 0.489; 0.37-0.66; P < 0.0001); PC4 (OR = 0.72; 0.55-0.94; P = 0.018) and PC6 (OR = 0.61; 0.46-0.81; P = 0.001). Moreover, significant inverse associations were detected between methylation and CKs levels in the whole group (rIL10 = - 0.22; rIL17A = - 0.25; rIL23 = - 0.19; rIL6 = - 0.22), and methylation with age in the whole group, EPL and RPL subgroups (r2TOT = 0.147; r2EPL = 0.136; r2 RPL = 0.248), while VPI controls lost significance (r2VPI = 0.011). This study provides a valuable multilayer approach for investigating epigenetic abnormalities in pregnancy loss suggesting genetic-driven dysregulations and anomalous epigenetic mechanisms potentially mediated by LINE-1 hypomethylation. Women with unexplained EPL might benefit of such investigations, providing new insights for predicting the pregnancy outcome and for treating at risk women with novel targeted epidrugs.


Asunto(s)
Aborto Espontáneo , Epigénesis Genética , Embarazo , Humanos , Femenino , Interleucina-10/genética , Interleucina-6/genética , Aborto Espontáneo/genética , Predisposición Genética a la Enfermedad , Metilación de ADN , Mantenimiento del Embarazo , Inflamación/genética , Apolipoproteínas E/genética
3.
BMC Med Genet ; 13: 70, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22883388

RESUMEN

BACKGROUND: Iron involvement/imbalance is strongly suspected in multiple sclerosis (MS) etiopathogenesis, but its role is quite debated. Iron deposits encircle the veins in brain MS lesions, increasing local metal concentrations in brain parenchyma as documented by magnetic resonance imaging and histochemical studies. Conversely, systemic iron overload is not always observed. We explored the role of common single nucleotide polymorphisms (SNPs) in the main iron homeostasis genes in MS patients. METHODS: By the pyrosequencing technique, we investigated 414 MS cases [Relapsing-remitting (RR), n=273; Progressive, n=141, of which: Secondary (SP), n=103 and Primary (PP), n=38], and 414 matched healthy controls. Five SNPs in 4 genes were assessed: hemochromatosis (HFE: C282Y, H63D), ferroportin (FPN1: -8CG), hepcidin (HEPC: -582AG), and transferrin (TF: P570S). RESULTS: The FPN1-8GG genotype was overrepresented in the whole MS population (OR=4.38; 95%CI, 1.89-10.1; P<0.0001) and a similar risk was found among patients with progressive forms. Conversely, the HEPC -582GG genotype was overrepresented only in progressive forms (OR=2.53; 95%CI, 1.34-4.78; P=0.006) so that SP and PP versus RR yielded significant outputs (P=0.009). For almost all SNPs, MS disability score (EDSS), severity score (MSSS), as well as progression index (PI) showed a significant increase when comparing homozygotes versus individuals carrying other genotypes: HEPC -582GG (EDSS, 4.24±2.87 vs 2.78±2.1; P=0.003; MSSS, 5.6±3.06 vs 3.79±2.6; P=0.001); FPN1-8GG (PI, 1.11±2.01 vs 0.6±1.31; P=0.01; MSSS, 5.08±2.98 vs 3.85±2.8; P=0.01); HFE 63DD (PI, 1.63±2.6 vs 0.6±0.86; P=0.009). Finally, HEPC -582G-carriers had a significantly higher chance to switch into the progressive form (HR=3.55; 1.83-6.84; log-rank P=0.00006). CONCLUSIONS: Polymorphisms in the genes coding for iron binding and transporting proteins, in the presence of local iron overload, might be responsible for suboptimal iron handling. This might account for the significant variability peculiar to MS phenotypes, particularly affecting MS risk and progression paving the way for personalized pharmacogenetic applications in the clinical practice.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Unión a Hierro/genética , Esclerosis Múltiple/genética , Polimorfismo Genético , Adulto , Péptidos Catiónicos Antimicrobianos/genética , Progresión de la Enfermedad , Femenino , Hemocromatosis/genética , Proteína de la Hemocromatosis , Hepcidinas , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Índice de Severidad de la Enfermedad , Transferrina
4.
Genes (Basel) ; 12(5)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065323

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10-25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.


Asunto(s)
Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Epigenoma , Ácido Fólico/metabolismo , Metionina/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Femenino , Ácido Fólico/genética , Humanos , Masculino , Metionina/genética , Polimorfismo de Nucleótido Simple , Factores Sexuales
5.
J Vis Exp ; (164)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33104072

RESUMEN

Three-dimensional (3D) printing as a type of additive manufacturing shows continuing increase in application and consumer popularity. The fused filament fabrication (FFF) is an inexpensive method used most frequently by consumers. Studies with 3D printers have shown that during the printing process particulate and volatile substances are released. Handheld 3D printing pens also use the FFF method but the consumer's proximity to the 3D pens gives reason to higher exposure compared to a 3D printer. At the same time, 3D printing pens are often marketed for children who could be more sensitive to the printing emission. The aim of this study was to implement a low cost method to analyze the emissions of 3D printing pens. Polylactide (PLA) and acrylonitrile butadiene styrene (ABS) filaments of different colors were tested. In addition, filaments containing metal and carbon nanotubes (CNTs) were analyzed. An 18.5 L chamber and sampling close to the emission source was used to characterize emissions and concentrations near the breathing zone of the user. Particle emissions and particle size distributions were measured and the potential release of metal particles and CNTs investigated. Particle number concentrations were found in a range of 105 - 106 particles/cm3, which is comparable to previous reports from 3D printers. Transmission electron microscopy (TEM) analysis showed nanoparticles of the different thermoplastic materials as well as of metal particles and CNTs. High contents of metal were observed by inductively coupled plasma mass spectrometry (ICP-MS). These results call for a cautious use of 3D pens due to potential risk to the consumers.


Asunto(s)
Material Particulado/análisis , Impresión Tridimensional/instrumentación , Acrilonitrilo/química , Aerosoles/análisis , Butadienos/química , Metales/análisis , Nanotubos de Carbono , Tamaño de la Partícula , Poliésteres/química , Espectrofotometría Atómica , Estireno/química
6.
Curr Neuropharmacol ; 7(1): 65-74, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19721819

RESUMEN

Free radicals are common outcome of normal aerobic cellular metabolism. In-built antioxidant system of body plays its decisive role in prevention of any loss due to free radicals. However, imbalanced defense mechanism of antioxidants, overproduction or incorporation of free radicals from environment to living system leads to serious penalty leading to neuro-degeneration. Neural cells suffer functional or sensory loss in neurodegenerative diseases. Apart from several other environmental or genetic factors, oxidative stress (OS) leading to free radical attack on neural cells contributes calamitous role to neuro-degeneration. Though, oxygen is imperative for life, imbalanced metabolism and excess reactive oxygen species (ROS) generation end into a range of disorders such as Alzheimer's disease, Parkinson's disease, aging and many other neural disorders. Toxicity of free radicals contributes to proteins and DNA injury, inflammation, tissue damage and subsequent cellular apoptosis. Antioxidants are now being looked upon as persuasive therapeutic against solemn neuronal loss, as they have capability to combat by neutralizing free radicals. Diet is major source of antioxidants, as well as medicinal herbs are catching attention to be commercial source of antioxidants at present. Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging. Antioxidants have a wide scope to sequester metal ions involved in neuronal plaque formation to prevent oxidative stress. In addition, antioxidant therapy is vital in scavenging free radicals and ROS preventing neuronal degeneration in post-oxidative stress scenario.

7.
Cell Mol Bioeng ; 10(1): 63-74, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28360944

RESUMEN

Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

8.
J Vis Exp ; (112)2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27285827

RESUMEN

Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.


Asunto(s)
Calor , Difusión
9.
Curr Pharm Des ; 22(11): 1534-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26675228

RESUMEN

Energy intensive and chemical routes predominately govern modern dental material fabrication involving complex physicochemical approaches. Current interest in dental material design is shifting towards biomineralization method and green chemistry synthesis to support oral tissue biocompatibility and oropharmacology. This review article describes the context of biophysical approaches based on development in nanoengineering to design advance nanomaterials for clinical dentistry. We particularly focus on approaches governing surface texture and hierarchical assembly emphasis based on micro-nanoscale tooth anatomy. Further, this article provides an overview about the merit of micro-nanoscale material design techniques exchanging the traditional dental material. In this context, top-down and bottom-up approaches involving biomimetic nanoengineering route, opportunities and challenges are discussed.


Asunto(s)
Biomimética , Materiales Dentales/química , Nanoestructuras/química , Nanotecnología/métodos , Odontología , Humanos
10.
Ann Biomed Eng ; 44(5): 1475-86, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26294010

RESUMEN

Left-right (LR) asymmetry is a biologically conserved property in living organisms that can be observed in the asymmetrical arrangement of organs and tissues and in tissue morphogenesis, such as the directional looping of the gastrointestinal tract and heart. The expression of LR asymmetry in embryonic tissues can be appreciated in biased cell alignment. Previously an in vitro chirality assay was reported by patterning multiple cells on microscale defined geometries and quantified the cell phenotype-dependent LR asymmetry, or cell chirality. However, morphology and chirality of individual cells on micropatterned surfaces has not been well characterized. Here, a Python-based algorithm was developed to identify and quantify immunofluorescence stained individual epithelial cells on multicellular patterns. This approach not only produces results similar to the image intensity gradient-based method reported previously, but also can capture properties of single cells such as area and aspect ratio. We also found that cell nuclei exhibited biased alignment. Around 35% cells were misaligned and were typically smaller and less elongated. This new imaging analysis approach is an effective tool for measuring single cell chirality inside multicellular structures and can potentially help unveil biophysical mechanisms underlying cellular chiral bias both in vitro and in vivo.


Asunto(s)
Núcleo Celular/metabolismo , Polaridad Celular/fisiología , Animales , Perros , Células de Riñón Canino Madin Darby
11.
Sci Rep ; 5: 7847, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25597401

RESUMEN

Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 µm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell-substrate interactions, and may benefit the optimization of scaffold design for CNS healing.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Señalización del Calcio , Animales , Astrocitos/citología , Técnicas de Cultivo de Célula , Células Cultivadas , Citoesqueleto/metabolismo , Exocitosis , Adhesiones Focales/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Lisosomas/fisiología , Microscopía Fluorescente , Mitocondrias/fisiología , Ratas , Ratas Sprague-Dawley , Imagen de Lapso de Tiempo
12.
Curr Pharm Biotechnol ; 14(14): 1201-12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24809717

RESUMEN

The blood brain barrier (BBB) maintains homeostasis by regulating the transport of chemicals at the brain interface. However, it is also one of the largest obstacles for drug delivery to the central nervous system (CNS). The utilization of nanoparticles as drug delivery vehicles is one potential solution to overcome this barrier. This review highlights the characteristics of the BBB that inhibit the passage of drugs to the brain, evaluates the efficiency of current in vitro models to mimic the BBB, and discusses the use of nanoparticles in both in vivo and in vitro models to enhance drug permeability across the barrier. In addition, this review describes factors that influence the passage of nanoparticles (type of polymers and surfactant coating, nanoparticle size) across the barrier. Protein opsonization and phagocytic activity of the reticuloendothelial system limits the amount of drug delivered to the brain, and this article summarizes methods to circumvent these issues. This paper also reviews literature covering opportunities and challenges provided with current applications of nanoparticle drug delivery systems for diseases of the brain, including cancer, HIV, and Alzheimer's disease.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Animales , Técnicas de Cultivo de Célula , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Humanos
13.
ACS Nano ; 8(3): 2196-205, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24559311

RESUMEN

Carbon nanotubes (CNTs) are receiving much attention in medicine, electronics, consumer products, and next-generation nanocomposites because of their unique nanoscale properties. However, little is known about the toxicity and oxidative stress related anomalies of CNTs on complex multicellular behavior. This includes cell chirality, a newly discovered cellular property important for embryonic morphogenesis and demonstrated by directional migration and biased alignment on micropatterned surfaces. In this study, we report the influence of single-walled carbon nanotubes (SWCNTs) on multicellular chirality. The incubation of human umbilical vein endothelial cells (hUVECs) and mouse myoblasts (C2C12) with CNTs at different doses and time points stimulates reactive oxygen species (ROS) production and intra- and extracellular oxidative stress (OS). The OS-mediated noxious microenvironment influences vital subcellular organelles (e.g., mitochondria and centrosomes), cytoskeletal elements (microtubules), and vinculin rich focal adhesions. The disorientated nuclear-centrosome (NC) axis and centriole disintegration lead to a decreased migration rate and loss of directional alignment on micropatterned surfaces. These findings suggest that CNT-mediated OS leads to loss of multicellular chirality. Furthermore, the in vitro microscale system presented here to measure cell chirality can be extended as a prototype for testing toxicity of other nanomaterials.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Mioblastos/citología , Mioblastos/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Pruebas de Toxicidad , Animales , Antioxidantes/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Centrosoma/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Adhesiones Focales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Mioblastos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
14.
Int J Low Extrem Wounds ; 9(4): 166-79, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21118859

RESUMEN

The iron metallobiology has long been suspected as a causal agent in venous leg ulcer (VLU) pathophysiology. However, it was demonstrated only recently that visible iron deposits cause lesions in only some individuals due to functional iron and related gene variants. In this article, the mechanism by which dysregulated iron cycle leads to local iron overload that could generate free radicals or activate a proteolytic hyperactivity on the part of matrix metalloproteinases (MMPs) or else downregulate tissue inhibitors of MMPs is reviewed. Also reviewed is the interplay of other vital factors such as coagulation factor XIII (FXIII), which influences tissue remodeling and angiogenesis, leading to impaired healing of the lesion, whether there exists altered interaction with MMPs or in presence of particular unfavorable single nucleotide polymorphisms.


Asunto(s)
Factor XIII/metabolismo , Hierro/metabolismo , Metaloproteasas/metabolismo , Úlcera Varicosa/genética , Antiinfecciosos , Matriz Extracelular , Variación Genética , Regeneración Tisular Dirigida , Humanos , Inflamación/metabolismo , Sobrecarga de Hierro , Polimorfismo de Nucleótido Simple , Pronóstico , Especies Reactivas de Oxígeno , Úlcera Varicosa/enzimología , Úlcera Varicosa/patología , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA