Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8005): 789-796, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538940

RESUMEN

The Antarctic Circumpolar Current (ACC) represents the world's largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1-3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles5-8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11-13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.

2.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35394032

RESUMEN

Shoot-borne adventitious/crown roots form a highly derived fibrous root system in grasses. The molecular mechanisms controlling their development remain largely unknown. Here, we provide a genome-wide landscape of transcriptional signatures - tightly regulated auxin response and in-depth spatio-temporal expression patterns of potential epigenetic modifiers - and transcription factors during priming and outgrowth of rice (Oryza sativa) crown root primordia. Functional analyses of rice transcription factors from WUSCHEL-RELATED HOMEOBOX and PLETHORA gene families reveal their non-redundant and species-specific roles in determining the root architecture. WOX10 and PLT1 regulate both shoot-borne crown roots and root-borne lateral roots, but PLT2 specifically controls lateral root development. PLT1 activates local auxin biosynthesis genes to promote crown root development. Interestingly, O. sativa PLT genes rescue lateral root primordia outgrowth defects of Arabidopsis plt mutants, demonstrating their conserved role in root primordia outgrowth irrespective of their developmental origin. Together, our findings unveil a molecular framework of tissue transdifferentiation during root primordia establishment, leading to the culmination of robust fibrous root architecture. This also suggests that conserved factors have evolved their transcription regulation to acquire species-specific function.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34670278

RESUMEN

Fungal infections or mycosis cause a wide range of diseases in humans and animals. The incidences of community acquired; nosocomial fungal infections have increased dramatically after the emergence of COVID-19 pandemic. The increase in number of patients with immunodeficiency / immunosuppression related diseases, resistance to existing antifungal compounds and availability of limited therapeutic options has triggered the search for alternative antifungal molecules. In this direction, antifungal peptides (AFPs) have received a lot of interest as an alternative to currently available antifungal drugs. Although the AFPs are produced by diverse population of living organisms, identifying effective AFPs from natural sources is time-consuming and expensive. Therefore, there is a need to develop a robust in silico model capable of identifying novel AFPs in protein sequences. In this paper, we propose Deep-AFPpred, a deep learning classifier that can identify AFPs in protein sequences. We developed Deep-AFPpred using the concept of transfer learning with 1DCNN-BiLSTM deep learning algorithm. The findings reveal that Deep-AFPpred beats other state-of-the-art AFP classifiers by a wide margin and achieved approximately 96% and 94% precision on validation and test data, respectively. Based on the proposed approach, an online prediction server is created and made publicly available at https://afppred.anvil.app/. Using this server, one can identify novel AFPs in protein sequences and the results are provided as a report that includes predicted peptides, their physicochemical properties and motifs. By utilizing this model, we identified AFPs in different proteins, which can be chemically synthesized in lab and experimentally validated for their antifungal activity.


Asunto(s)
Antifúngicos/química , Tratamiento Farmacológico de COVID-19 , COVID-19 , Mucormicosis , Pandemias/prevención & control , Péptidos/química , SARS-CoV-2 , Antifúngicos/uso terapéutico , COVID-19/epidemiología , COVID-19/microbiología , Humanos , Mucormicosis/tratamiento farmacológico , Mucormicosis/epidemiología
4.
Environ Res ; 241: 117638, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972812

RESUMEN

Satellite imagery has emerged as the predominant method for performing spatial and temporal water quality analyses on a global scale. This study employs remote sensing techniques to monitor the water quality of the Bisalpur wetland during both the pre and post-monsoon seasons in 2013 and 2022. The study aims to investigate the prospective use of Landsat-8 (L8) and Landsat-9 (L9) data acquired from the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) for the temporal monitoring of turbidity. Concurrently, the study examines the relationship of turbidity with water surface temperature (WST) and chlorophyll-a (Chl-a) concentrations. We utilized visible and near-infrared (NIR) bands to conduct a single-band spectral response analysis of wetland turbidity. The results reveal a notable increase in turbidity concentration in May 2022, as this timeframe recorded the highest reflectance (0.28) in the NIR band. Additionally, the normalized difference turbidity index (NDTI) formula was used to assess the overall turbidity levels in the wetland. The results indicated that the highest concentration was observed in May 2013, with a value of 0.37, while the second-highest concentration was recorded in May 2022, with a value of 0.25. The WST was calculated using thermal band-10 in conjunction with Chlorophyll-a, utilizing the normalized difference chlorophyll index (NDCI). The regression analysis shows a positive correlation between turbidity and WST, as indicated by R2 values of 0.41 in May 2013 and 0.40 in May 2022. Furthermore, a robust positive relationship exists between turbidity and Chl-a, with a high R2 value of 0.71 in May 2022. These findings emphasize the efficacy of the L8 and L9 datasets for conducting temporal analyses of wetland turbidity, WST, and Chl-a. Additionally, this research underscores the critical role of satellite imagery in assessing and managing water quality, particularly in situations where in-situ data is lacking.


Asunto(s)
Imágenes Satelitales , Humedales , Monitoreo del Ambiente/métodos , India , Clorofila A/análisis , Clorofila/análisis
5.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34259329

RESUMEN

With advancements in genomics, there has been substantial reduction in the cost and time of genome sequencing and has resulted in lot of data in genome databases. Antimicrobial host defense proteins provide protection against invading microbes. But confirming the antimicrobial function of host proteins by wet-lab experiments is expensive and time consuming. Therefore, there is a need to develop an in silico tool to identify the antimicrobial function of proteins. In the current study, we developed a model AniAMPpred by considering all the available antimicrobial peptides (AMPs) of length $\in $[10 200] from the animal kingdom. The model utilizes a support vector machine algorithm with deep learning-based features and identifies probable antimicrobial proteins (PAPs) in the genome of animals. The results show that our proposed model outperforms other state-of-the-art classifiers, has very high confidence in its predictions, is not biased and can classify both AMPs and non-AMPs for a diverse peptide length with high accuracy. By utilizing AniAMPpred, we identified 436 PAPs in the genome of Helobdella robusta. To further confirm the functional activity of PAPs, we performed BLAST analysis against known AMPs. On detailed analysis of five selected PAPs, we could observe their similarity with antimicrobial proteins of several animal species. Thus, our proposed model can help the researchers identify PAPs in the genome of animals and provide insight into the functional identity of different proteins. An online prediction server is also developed based on the proposed approach, which is freely accessible at https://aniamppred.anvil.app/.


Asunto(s)
Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Inteligencia Artificial , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Algoritmos , Animales , Bases de Datos Genéticas , Genoma , Genómica/métodos , Aprendizaje Automático , Filogenia , Curva ROC , Reproducibilidad de los Resultados , Navegador Web , Flujo de Trabajo
6.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33784381

RESUMEN

The overuse of antibiotics has led to emergence of antimicrobial resistance, and as a result, antibacterial peptides (ABPs) are receiving significant attention as an alternative. Identification of effective ABPs in lab from natural sources is a cost-intensive and time-consuming process. Therefore, there is a need for the development of in silico models, which can identify novel ABPs in protein sequences for chemical synthesis and testing. In this study, we propose a deep learning classifier named Deep-ABPpred that can identify ABPs in protein sequences. We developed Deep-ABPpred using bidirectional long short-term memory algorithm with amino acid level features from word2vec. The results show that Deep-ABPpred outperforms other state-of-the-art ABP classifiers on both test and independent datasets. Our proposed model achieved the precision of approximately 97 and 94% on test dataset and independent dataset, respectively. The high precision suggests applicability of Deep-ABPpred in proposing novel ABPs for synthesis and experimentation. By utilizing Deep-ABPpred, we identified ABPs in the tail protein sequences of Streptococcus bacteriophages, chemically synthesized identified peptides in lab and tested their activity in vitro. These ABPs showed potent antibacterial activity against selected Gram-positive and Gram-negative bacteria, which confirms the capability of Deep-ABPpred in identifying novel ABPs in protein sequences. Based on the proposed approach, an online prediction server is also developed, which is freely accessible at https://abppred.anvil.app/. This web server takes the protein sequence as input and provides ABPs with high probability (>0.95) as output.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Aprendizaje Profundo , Péptidos/química , Péptidos/farmacología , Secuencia de Aminoácidos , Antibacterianos/síntesis química , Biología Computacional/métodos , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Péptidos/síntesis química , Fagos de Streptococcus/química , Proteínas de la Cola de los Virus/química
7.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36395058

RESUMEN

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Prueba de COVID-19 , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Estudios Prospectivos , Técnicas de Laboratorio Clínico/métodos , Sensibilidad y Especificidad , Péptidos
8.
J Cutan Pathol ; 50(12): 1042-1047, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37718479

RESUMEN

Primary cutaneous apocrine carcinoma is a rare adnexal tumor that arises from apocrine progenitor cells. These tumors may be associated with benign apocrine hyperplasia, and a longstanding history of a lesion should not preclude a malignant diagnosis. We report a case of a 70-year-old female who presented to the clinic with a 3-year history of an asymptomatic vulvar lesion. An excisional biopsy was performed. Histopathologic examination revealed a tumor with two distinct components. The first component was determined to be a benign tubular apocrine adenoma. The second component, arising within the apocrine adenoma, was determined to be an apocrine carcinoma based on histopathologic features and immunohistochemical profile. Twelve months after subsequent wide local excision and sentinel node biopsy, the patient is alive without recurrence.


Asunto(s)
Adenoma , Carcinoma , Neoplasias de las Glándulas Sudoríparas , Femenino , Humanos , Anciano , Glándulas Apocrinas/patología , Diagnóstico Diferencial , Neoplasias de las Glándulas Sudoríparas/patología , Adenoma/patología , Biopsia del Ganglio Linfático Centinela , Carcinoma/patología
9.
Eur Arch Otorhinolaryngol ; 280(2): 797-809, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36036274

RESUMEN

OBJECTIVES: Current trials for HPV-associated oropharyngeal SCCs (OP-SCCs) are evaluating treatment de-escalation including use of concurrent immunotherapy with radiation therapy (I-RT). Given limited prospective data following I-RT, we aimed to examine this question utilizing the National Cancer Data Base (NCDB). METHODS: The NCDB was queried for patients with HPV-associated OP-SCCs eligible for current de-escalation studies with AJCC 7th edition T1-T2/N1-N2b and T3/N0-N2b disease. Patients were stratified into I-RT, concurrent chemoradiation (C-RT), and radiation therapy alone (RT) arms. Kaplan-Meier analysis was utilized to compare overall survival (OS) between treatment arms followed by a Cox multivariate (MVA) proportional hazards model controlling for tumor and patient characteristics and propensity-score analyses with inverse probability treatment weighting (IPTW). RESULTS: We identified 4768 patients; 313 received I-RT, 3660 patients received C-RT, and 795 received RT. Median age was 62 years (range 27-90) with a median Charlson-Deyo co-morbidity score of 0 (range: 0-3). The vast majority were cN1-N2a (88.8%) and 26.5% were cT3. On MVA, inferior 3-year and 8-year OS was noted following I-RT (81.6% and 70.5%) vs. C-RT (90.6% and 79.4%) (HR = 1.69 (95% CI: 1.29-2.21); p < 0.0001) with no significant difference vs. RT (88.1% and 75.8%) (HR = 1.07; p = 0.80). This was also maintained on IPTW-analysis (HR = 1.62 (95% CI: 1.23-2.15); p = 0.001). CONCLUSIONS: I-RT was associated with significantly poorer OS vs. C-RT with no benefit compared to RT for HPV-associated OP-SCCs. I-RT is not recommended outside of currently accruing clinical trials.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/complicaciones , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/terapia , Infecciones por Papillomavirus/patología , Estudios Prospectivos , Neoplasias Orofaríngeas/patología , Neoplasias de Cabeza y Cuello/complicaciones
10.
Genomics ; 114(4): 110427, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803450

RESUMEN

The present study was undertaken to characterize the distinct immune response in indigenous Ghurrah and exotic Landrace pigs by challenging monocyte-derived macrophages (MDMs) with CSF virus under in-vitro conditions and assessing the variations in the transcriptome profile at 48 h post-infection (hpi). RNA-sequencing was carried out in infected and non-infected MDMs of Ghurrah (n = 3) and Landrace (n = 3) piglets prior- as well as post-stimulation. MDMs of Ghurrah showed greater immune regulation in response to CSF infection with 518 significantly differentially expressed genes (DEG) in infected versus non-infected MDMs, as compared to only 31 DEGs in Landrace MDMs. In Landrace, the principal regulators of inflammation (IL1α, IL1ß and TNF) were upregulated in infected cells while in Ghurrah, these were downregulated. Overall, macrophages from indigenous Ghurrah showed more immunological dysregulation in response to virulent CSF virus infection as compared to the exotic Landrace pigs.


Asunto(s)
Perfilación de la Expresión Génica , Macrófagos , Animales , Inmunidad , Porcinos , Transcriptoma
11.
Acta Virol ; 67(1): 79-90, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950888

RESUMEN

Equine herpesvirus 1 (EHV1) infection is a global health problem in equines and the virus is responsible for abortions, respiratory disease and myeloencephalitis in horses. Disease management requires proper biosecurity and immunoprophylactic measures. Vaccines strengthening both arms of immunity are essential for proper control and there has been a continuous focus in this area for generation of better vaccines. Here we report construction of bacterial artificial chromosome (BAC) clone of EHV-1 strain Tohana for mutagenesis of the virus and generation of gE gene deletion mutant EHV1. The BAC clone was generated by inserting the mini-F plasmid replacing ORF71 of EHV1 and transforming into E. coli for generation of EHV1-BAC. The infectious virus was regenerated from EHV-1 BAC DNA in RK13 cells. To check utility of EHV1-BAC, we have generated mutant EHV1 by deleting the virulence-associated gE gene. The mutant virus (vToHΔgE) showed significantly reduced plaque size without affecting replication efficiency. Pathological evaluation of lesions in BALB/c mice infected with vToHΔgE revealed reduction in clinical signs and pathology in comparison to the wild-type virus. Generation of infectious BAC of EHV1 and its usage in construction of attenuated viruses shows potential of the technology for development of indigenous modified live vaccine for EHV1. Keywords: quine herpesvirus 1; bacterial artificial chromosome (BAC); mutation; glycoprotein E; vaccine.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Embarazo , Femenino , Animales , Caballos , Ratones , Herpesvirus Équido 1/genética , Escherichia coli/genética , Modelos Animales de Enfermedad , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/genética , Enfermedades de los Caballos/prevención & control , Eliminación de Gen
12.
Angew Chem Int Ed Engl ; 62(15): e202218770, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36789791

RESUMEN

Possible routes for intra-cluster bond formation (ICBF) in protonated serine dimers have been studied. We found no evidence of ICBF following low energy collision-induced dissociation (in correspondence with previous works), however, we do observe clear evidence for ICBF following photon absorption in the 4.6-14 eV range. Moreover, the comparison of photon-induced dissociation measurements of the protonated serine dimer to those of a protonated serine dipeptide provides evidence that ICBF, in this case, involves peptide bond formation (PBF). The experimental results are supported by ab initio molecular dynamics and exploration of several excited state potential energy surfaces, unraveling a pathway for PBF following photon absorption. The combination of experiments and theory provides insight into the PBF mechanisms in clusters of amino acids, and reveals the importance of electronic excited states reached upon UV/VUV light excitation.

13.
J Cell Sci ; 134(5)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32482793

RESUMEN

Foot-and-mouth disease virus (FMDV) is a picornavirus that causes contagious acute infection in cloven-hoofed animals. FMDV replication-associated viral protein expression induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), in turn inducing autophagy to restore cellular homeostasis. We observed that inhibition of BiP (also known as HSPA5 and GRP78), a master regulator of ER stress and UPR, decreased FMDV infection confirming their involvement. Further, we show that the FMDV infection induces UPR mainly through the PKR-like ER kinase (PERK; also known as EIF2AK3)-mediated pathway. Knockdown of PERK and chemical inhibition of PERK activation resulted in decreased expression of FMDV proteins along with the reduction of autophagy marker protein LC3B-II [the lipidated form of LC3B (also known as MAP1LC3B)]. There are conflicting reports on the role of autophagy in FMDV multiplication. Our study systematically demonstrates that during FMDV infection, PERK-mediated UPR stimulated an increased level of endogenous LC3B-II and turnover of SQSTM1, thus confirming the activation of functional autophagy. Modulation of the UPR and autophagy by pharmacological and genetic approaches resulted in reduced numbers of viral progeny, by enhancing the antiviral interferon response. Taken together, this study underscores the prospect of exploring PERK-mediated autophagy as an antiviral target.


Asunto(s)
Virus de la Fiebre Aftosa , Animales , Antivirales/farmacología , Autofagia , Estrés del Retículo Endoplásmico , Virus de la Fiebre Aftosa/metabolismo , Interferones , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
14.
Rapid Commun Mass Spectrom ; 36(6): e9245, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34939243

RESUMEN

RATIONALE: Acrylamide is classified as a probable human carcinogen that is metabolised to glycidamide, which can covalently bind to DNA. The aim of this study was to investigate the formation of N7-glycidamide guanine (N7-GA-Gua) adducts in human blood DNA following exposure to acrylamide present in carbohydrate-rich foods as part of the normal human diet. METHODS: Lymphocyte DNA was extracted from blood samples obtained from healthy human volunteers. Following thermal depurination of the DNA samples, N7-GA-Gua adducts were quantified using a validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) method incorporating a stable isotope labelled internal standard. Estimated dietary acrylamide intake was recorded by completion of food frequency questionnaires for the 24 hours prior to volunteer blood donation. RESULTS: An LC/MS/MS method was validated with a limit of detection of 0.25 fmol and a lower limit of quantitation of 0.50 fmol on column. N7-GA-Gua adducts were detected in human blood DNA with the levels ranging between 0.3 to 6.3 adducts per 108 nucleotides. The acrylamide intake was calculated from the food frequency questionnaires ranging between 20.0 and 78.6 µg. CONCLUSIONS: Identification and quantification of N7-GA-Gua adducts in the blood DNA of healthy volunteers suggests that dietary acrylamide exposure may lead to the formation of DNA adducts. This important finding warrants further investigation to ascertain a correlation between environmental/dietary acrylamide exposure and levels of DNA adducts.


Asunto(s)
Acrilamida/metabolismo , Cromatografía Liquida/métodos , Aductos de ADN/química , ADN/química , Exposición Dietética/efectos adversos , Compuestos Epoxi/química , Guanina/química , Espectrometría de Masas en Tándem/métodos , Humanos , Linfocitos/química
15.
Arch Virol ; 167(10): 2035-2040, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35752986

RESUMEN

In this study, the duration of immunity following a single-dose vaccination using an attenuated live goatpox vaccine (GTPV/Uttarkashi/1978 strain) was evaluated in goatpox-seronegative goats for 52 months. Long-term immunity was evaluated by clinical protection upon virulent virus challenge and serum neutralization assay applied to serum samples. The rise in the level of GTPV-specific antibodies was found to reach a maximum at 21 days post-vaccination, and these antibodies were maintained for 1 to 2 years after immunization, with a steady decline. Upon virulent virus challenge at 12, 24, 42, and 52 months post-vaccination, protection in all the vaccinated animals was evident (100%), whereas, the control animals developed severe clinical disease. This is the first time that the long-term immunity of a live goatpox vaccine has been investigated up to 52 months after vaccination in goats by virulent virus challenge and demonstration of serum neutralization titres. This vaccine has immense potential for controlling and eradicating goatpox from an enzootic region.


Asunto(s)
Capripoxvirus , Enfermedades de las Cabras , Infecciones por Poxviridae , Vacunas Virales , Animales , Anticuerpos Antivirales , Capripoxvirus/genética , Cabras , Infecciones por Poxviridae/veterinaria , Vacunación/veterinaria , Vacunas Atenuadas
16.
Mol Biol Rep ; 49(7): 7101-7110, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35568789

RESUMEN

BACKGROUND: The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system was initially identified in bacteria and archaea as a defense mechanism to confer immunity against phages. Later on, it was developed as a gene editing tool for both prokaryotic and eukaryotic cells including plant cells. METHODS AND RESULTS: CRISPR/Cas9 approach has wider applications in reverse genetics as well as in crop improvement. Various characters involved in enhancing economic value and crop sustainability against biotic/abiotic stresses can be targeted through this tool. Currently, CRISPR/Cas9 gene editing mechanism has been applied on around 20 crop species for improvement in several traits including yield enhancement and resistance against biotic and abiotic stresses. In the last five years, maximum genome editing research has been validated in rice, wheat, maize and soybean. Genes targeted in these plants has been involved in causing male sterility, conferring resistance against pathogens or having certain nutritional value. CONCLUSIONS: Current review summarizes various applications of CRISPR/Cas system and its future prospects in plant biotechnology targeting crop improvement with higher yield, disease tolerance and enhanced nutritional value.


Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas , Biotecnología , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Genoma de Planta , Valor Nutritivo , Plantas Modificadas Genéticamente/genética
17.
Appl Microbiol Biotechnol ; 106(19-20): 6745-6757, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36089639

RESUMEN

Large-scale monitoring of foot-and-mouth disease (FMD) in livestock is imperative in an FMD control program. Detection of antibodies against non-structural proteins (NSP) of FMD virus (FMDV) is one of the best tools to estimate the prevalence of past infection; availability of such a well-validated test is therefore essential. Using a FMDV 3B protein-specific monoclonal antibody, we have developed a new NSP antibody blocking ELISA (10H9 bELISA) and validated it on large panels of sera from different susceptible species. The diagnostic sensitivity of the ELISA was 95% with a specificity of 98%, similar to the values found using a commercial kit (PrioCHECK FMD NS test). The 10H9 bELISA can be used in a broad range of FMD susceptible species making it a very useful tool in monitoring the foot-and-mouth disease control programs by detection of virus circulation in the vaccinated populations. KEY POINTS: • A new ELISA for detection of foot and mouth disease (FMD) antibodies. • Diagnostic sensitivity of 95% and specificity of 98%. • Tested with panels of validated sera from broad host range.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/prevención & control , Especificidad del Huésped , Proteínas no Estructurales Virales
18.
Eur J Wildl Res ; 68(5): 59, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992994

RESUMEN

We report an incidence of natural infection of SARS-CoV-2 in free-ranging Indian leopard (Panthera pardus fusca). The case was detected during routine screening. Post-mortem and laboratory examination suggested virus-induced interstitial pneumonia. Viral genome could be detected in various organs including brain, lung, spleen, and lymph nodes by real-time PCR. Whole-genome sequence analysis confirmed infection of Pango lineage B.1.617.2 of SARS-CoV-2. Till now, only Asiatic lions have been reported to be infected by SARS-CoV-2 in India. Infections in animals were detected during peak phase of pandemic and all the cases were captive with close contacts with humans, whereas the present case was observed when human cases were significantly low. No tangible evidence linked to widespread infection in the wild population and the incidence seems to be isolated case. High nucleotide sequence homology with prevailing viruses in humans suggested spillover infection to the animal. This report underlines the need for intensive screening of wild animals for keeping track of the virus evolution and development of carrier status of SARS-CoV-2 among wildlife species. Supplementary Information: The online version contains supplementary material available at 10.1007/s10344-022-01608-4.

19.
Emerg Infect Dis ; 27(6): 1745-1748, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34013856

RESUMEN

We collected 10 Burkholderia mallei isolates from equids in 9 districts in India during glanders outbreaks in 2013-2016. Multilocus variable-number tandem-repeat analysis showed 7 outbreak area-related genotypes. The study highlights the utility of this analysis for epidemiologically tracing of specific B. mallei isolates during outbreaks.


Asunto(s)
Burkholderia mallei , Muermo , Animales , Burkholderia mallei/genética , Caballos , India , Repeticiones de Minisatélite , Tipificación Molecular
20.
Appl Microbiol Biotechnol ; 105(23): 8895-8906, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714365

RESUMEN

Canine parvovirus-2 (CPV-2) is ubiquitously distributed in dog population worldwide causing a severe and often fatal gastroenteritis. Owing to its highly contagious nature, rapid detection of CPV is crucial in effective control of the disease. Aptamers have emerged as potential alternative to antibodies as affinity reagents in diagnostic field. Present study was aimed to select and validate ssDNA aptamers specific to CPV. Systematic evolution of ligands through exponential enrichment (SELEX) method was employed for selection of CPV structural protein (VP2) specific DNA aptamers. SELEX was performed using a pool of ssDNA library comprising 30 random nucleotide region. A total of seven rounds of SELEX were performed using VP2 protein as target antigen which yielded ten aptamers (1A-10A) with distinct sequences. Target binding of all ten aptamers was assessed by dot blot and enzyme-linked oligonucleotide assay (ELONA) which revealed that 5A, 6A, 9A, and 10A were superior binders. In silico analysis of the aptamers revealed the existence of binding site on VP2 protein, and binding pattern was similar to in vitro findings. The affinity (KD) of all these four binders against CPV was evaluated by ELONA indicating relatively higher affinity of 6A and 10A than remaining two DNA sequences. Out of which, aptamer 6A displayed cross-reactivity with canine distemper virus and canine corona virus. Hence, aptamer 10A was considered as better binding sequence having high specificity and affinity for CPV. The study confirms the future utility of selected aptamers in development of a reliable diagnostic for rapid detection of CPV. KEY POINTS: • Canine parvovirus-specific ssDNA aptamers were identified with nanomolar affinity (100-150 nM). • Three aptamers displayed negligible cross-reactivity with other related viruses. • Aptamer 10A displayed high binding affinity and specificity to CPV.


Asunto(s)
Aptámeros de Nucleótidos , Parvovirus Canino , Animales , ADN de Cadena Simple/genética , Perros , Biblioteca de Genes , Parvovirus Canino/genética , Técnica SELEX de Producción de Aptámeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA