Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochem J ; 477(23): 4473-4489, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175092

RESUMEN

Post-translational modifications such as phosphorylation, nitrosylation, and pupylation modulate multiple cellular processes in Mycobacterium tuberculosis. While protein methylation at lysine and arginine residues is widespread in eukaryotes, to date only two methylated proteins in Mtb have been identified. Here, we report the identification of methylation at lysine and/or arginine residues in nine mycobacterial proteins. Among the proteins identified, we chose MtrA, an essential response regulator of a two-component signaling system, which gets methylated on multiple lysine and arginine residues to examine the functional consequences of methylation. While methylation of K207 confers a marginal decrease in the DNA-binding ability of MtrA, methylation of R122 or K204 significantly reduces the interaction with the DNA. Overexpression of S-adenosyl homocysteine hydrolase (SahH), an enzyme that modulates the levels of S-adenosyl methionine in mycobacteria decreases the extent of MtrA methylation. Most importantly, we show that decreased MtrA methylation results in transcriptional activation of mtrA and sahH promoters. Collectively, we identify novel methylated proteins, expand the list of modifications in mycobacteria by adding arginine methylation, and show that methylation regulates MtrA activity. We propose that protein methylation could be a more prevalent modification in mycobacterial proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Mycobacterium tuberculosis/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Metilación , Mycobacterium tuberculosis/genética
2.
J Biol Chem ; 294(22): 8930-8941, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30952697

RESUMEN

Bacillus anthracis is the causative agent of anthrax in humans, bovine, and other animals. B. anthracis pathogenesis requires differentiation of dormant spores into vegetative cells. The spores inherit cellular components as phenotypic memory from the parent cell, and this memory plays a critical role in facilitating the spores' revival. Because metabolism initiates at the beginning of spore germination, here we metabolically reprogrammed B. anthracis cells to understand the role of glycolytic enzymes in this process. We show that increased expression of enolase (Eno) in the sporulating mother cell decreases germination efficiency. Eno is phosphorylated by the conserved Ser/Thr protein kinase PrkC which decreases the catalytic activity of Eno. We found that phosphorylation also regulates Eno expression and localization, thereby controlling the overall spore germination process. Using MS analysis, we identified the sites of phosphorylation in Eno, and substitution(s) of selected phosphorylation sites helped establish the functional correlation between phosphorylation and Eno activity. We propose that PrkC-mediated regulation of Eno may help sporulating B. anthracis cells in adapting to nutrient deprivation. In summary, to the best of our knowledge, our study provides the first evidence that in sporulating B. anthracis, PrkC imprints phenotypic memory that facilitates the germination process.


Asunto(s)
Bacillus anthracis/fisiología , Proteínas Bacterianas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esporas Bacterianas/metabolismo , Bacillus anthracis/enzimología , Proteínas Bacterianas/genética , Cinética , Magnesio/metabolismo , Mutagénesis Sitio-Dirigida , Fosfopiruvato Hidratasa/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
3.
Annu Rev Microbiol ; 69: 527-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26359969

RESUMEN

The role of protein phosphatases in pathogenic bacteria has been studied extensively over the last two decades. Ser/Thr and Tyr phosphatases are associated with growth and virulence of many bacteria. These phosphatases control kinase-mediated functions and return the proteins to their unmodified state. Biochemical, structural, and functional studies, in addition to extensive genetic characterization, have highlighted the importance of phosphatases in bacteria. However, questions remain regarding the mechanisms driving localization of secretory phosphatases to cellular compartments, identification of receptor phosphatase sensory signals, and a possible role of cofactors and ligands in their functions. This review focuses on the role of Ser/Thr- and Tyr-specific phosphatases present in pathogenic bacteria, with an emphasis on the regulation of basic cellular processes and virulence. Furthermore, we highlight their clinical importance and analyze the development of drugs targeting protein phosphatases.


Asunto(s)
Bacterias/patogenicidad , Fenómenos Fisiológicos Bacterianos , Fosfoproteínas Fosfatasas/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Virulencia
4.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642988

RESUMEN

Bacterial alternative sigma factors are mostly regulated by a partner-switching mechanism. Regulation of the virulence-associated alternative sigma factor SigF of Mycobacterium tuberculosis has been an area of intrigue, with SigF having more predicted regulators than other sigma factors in this organism. Rv1364c is one such predicted regulator, the mechanism of which is confounded by the presence of both anti-sigma factor and anti-sigma factor antagonist functions in a single polypeptide. Using protein binding and phosphorylation assays, we demonstrate that the anti-sigma factor domain of Rv1364c mediates autophosphorylation of its antagonist domain and binds efficiently to SigF. Furthermore, we identified a direct role for the osmosensor serine/threonine kinase PknD in regulating the SigF-Rv1364c interaction, adding to the current understanding about the intersection of these discrete signaling networks. Phosphorylation of SigF also showed functional implications in its DNA binding ability, which may help in activation of the regulon. In M. tuberculosis, osmotic stress-dependent induction of espA, a SigF target involved in maintaining cell wall integrity, is curtailed upon overexpression of Rv1364c, showing its role as an anti-SigF factor. Overexpression of Rv1364c led to induction of another target, pks6, involved in lipid metabolism. This induction was, however, curtailed in the presence of osmotic stress conditions, suggesting modulation of SigF target gene expression via Rv1364c. These data provide evidence that Rv1364c acts an independent SigF regulator that is sensitive to the osmosensory signal, mediating the cross talk of PknD with the SigF regulon.IMPORTANCEMycobacterium tuberculosis, capable of latently infecting the host and causing aggressive tissue damage during active tuberculosis, is endowed with a complex regulatory capacity built of several sigma factors, protein kinases, and phosphatases. These proteins regulate expression of genes that allow the bacteria to adapt to various host-derived stresses, like nutrient starvation, acidic pH, and hypoxia. The cross talk between these systems is not well understood. SigF is one such regulator of gene expression that helps M. tuberculosis to adapt to stresses and imparts virulence. This work provides evidence for its inhibition by the multidomain regulator Rv1364c and activation by the kinase PknD. The coexistence of negative and positive regulators of SigF in pathogenic bacteria reveals an underlying requirement for tight control of virulence factor expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica , Fosforilación , Unión Proteica
5.
Pharm Res ; 34(7): 1444-1458, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28432535

RESUMEN

PURPOSE: Over expression of ATP-binding cassette transporters is considered one of the major reasons for non-responsiveness to antiepileptic drugs. Carbamazepine (CBZ), one of first line antiepileptic drug is known to influence ABCC2 expression but its exact molecular mechanism is unknown. METHODS: We investigated the effect of CBZ on expression of ABCC2 and pregnane X receptor (PXR) in HepG2 cell line and compared with hyperforin (agonist of PXR) and ketoconazole (antagonist of PXR) through realtime PCR and western blot assay. Involvement of PXR was demonstrated through nuclear translocation and RNA interference and related effect of CBZ on ABCC2 through functional activity assay. Molecular docking and dynamic simulation approach was used to understand the interaction of CBZ with PXR. RESULTS: CBZ and hyperforin increased the PXR and ABCC2 expression whereas reversed when present it in combination with ketoconazole. Experiments confirmed CBZ induced ABCC2 expression is PXR dependent. Molecular dynamic (MD) simulation and in vitro experiment indicated possibility of CBZ to be PXR agonist and PXR residue Gln285 to be important for CBZ-PXR interaction. CONCLUSIONS: CBZ alters the functional activity of ABCC2 through PXR, which in turn can interfere with therapy. Mutational analysis of residues revealed the importance of Gln285 in ligand interaction.


Asunto(s)
Anticonvulsivantes/química , Carbamazepina/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Receptores de Esteroides/química , Transporte Activo de Núcleo Celular , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacología , Unión Competitiva , Carbamazepina/farmacología , Núcleo Celular/metabolismo , Simulación por Computador , Células Hep G2 , Humanos , Cetoconazol/química , Cetoconazol/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación , Floroglucinol/análogos & derivados , Floroglucinol/química , Floroglucinol/farmacología , Receptor X de Pregnano , Unión Proteica , Interferencia de ARN , Receptores de Esteroides/agonistas , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/genética , Terpenos/química , Terpenos/farmacología
6.
J Biol Chem ; 290(43): 26218-34, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26350458

RESUMEN

Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Acilación , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mycobacterium tuberculosis/enzimología , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Conformación Proteica , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
7.
J Biol Chem ; 287(32): 26749-63, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22711536

RESUMEN

Dual specificity protein kinases (DSPKs) are unique enzymes that can execute multiple functions in the cell, which are otherwise performed exclusively by serine/threonine and tyrosine protein kinases. In this study, we have characterized the protein kinases Bas2152 (PrkD) and Bas2037 (PrkG) from Bacillus anthracis. Transcriptional analyses of these kinases showed that they are expressed in all phases of growth. In a serendipitous discovery, both kinases were found to be DSPKs. PrkD was found to be similar to the eukaryotic dual specificity Tyr phosphorylation-regulated kinase class of dual specificity kinases, which autophosphorylates on Ser, Thr, and Tyr residues and phosphorylates Ser and Thr residues on substrates. PrkG was found to be a bona fide dual specificity protein kinase that mediates autophosphorylation and substrate phosphorylation on Ser, Thr, and Tyr residues. The sites of phosphorylation in both of the kinases were identified through mass spectrometry. Phosphorylation on Tyr residues regulates the kinase activity of PrkD and PrkG. PrpC, the only known Ser/Thr protein phosphatase, was also found to possess dual specificity. Genistein, a known Tyr kinase inhibitor, was found to inhibit the activities of PrkD and PrkG and affect the growth of B. anthracis cells, indicating a possible role of these kinases in cell growth and development. In addition, the glycolytic enzyme pyruvate kinase was found to be phosphorylated by PrkD on Ser and Thr residues but not by PrkG. Thus, this study provides the first evidence of DSPKs in B. anthracis that belong to different classes and have different modes of regulation.


Asunto(s)
Bacillus anthracis/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Bacillus anthracis/genética , Secuencia de Bases , Western Blotting , ADN Bacteriano , Genoma Bacteriano , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato , Quinasas DyrK
8.
Biometals ; 26(5): 715-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23793375

RESUMEN

Bacillus anthracis Ser/Thr protein kinase PrkC (BasPrkC) is important for virulence of the bacterium within the host. Homologs of PrkC and its cognate phosphatase PrpC (BasPrpC) are the most conserved mediators of signaling events in diverse bacteria. BasPrkC homolog in Bacillus subtilis regulates critical processes like spore germination and BasPrpC modulates the activity of BasPrkC by dephosphorylation. So far, biochemical and genetic studies have provided important insights into the roles of BasPrkC and BasPrpC; however, regulation of their activities is not known. We studied the regulation of BasPrkC/BasPrpC pair and observed that Zn(2+) metal ions can alter their activities. Zn(2+) promotes BasPrkC kinase activity while inhibits the BasPrpC phosphatase activity. Concentration of Zn(2+) in growing B. anthracis cells was found to vary with growth phase. Zn(2+) was found to be lowest in log phase cells while it was highest in spores. This variation in Zn(2+) concentration is significant for understanding the antagonistic activities of BasPrkC/BasPrpC pair. Our results also show that BasPrkC activity is modulated by temperature changes and kinase inhibitors. Additionally, we identified Elongation Factor Tu (BasEf-Tu) as a substrate of BasPrkC/BasPrpC pair and assessed the impact of their regulation on BasEf-Tu phosphorylation. Based on these results, we propose Zn(2+) as an important regulator of BasPrkC/BasPrpC mediated phosphorylation cascades. Thus, this study reveals additional means by which BasPrkC can be activated leading to autophosphorylation and substrate phosphorylation.


Asunto(s)
Bacillus anthracis/efectos de los fármacos , Bacillus anthracis/enzimología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Zinc/farmacología , Bacillus anthracis/citología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Relación Estructura-Actividad
9.
J Bacteriol ; 193(19): 5347-58, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21803988

RESUMEN

During protein synthesis, translation elongation factor Tu (Ef-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. The activity of Ef-Tu is dependent on its interaction with GTP. Posttranslational modifications, such as phosphorylation, are known to regulate the activity of Ef-Tu in several prokaryotes. Although a study of the Mycobacterium tuberculosis phosphoproteome showed Ef-Tu to be phosphorylated, the role of phosphorylation in the regulation of Ef-Tu has not been studied. In this report, we show that phosphorylation of M. tuberculosis Ef-Tu (MtbEf-Tu) by PknB reduced its interaction with GTP, suggesting a concomitant reduction in the level of protein synthesis. Overexpression of PknB in Mycobacterium smegmatis indeed reduced the level of protein synthesis. MtbEf-Tu was found to be phosphorylated by PknB on multiple sites, including Thr118, which is required for optimal activity of the protein. We found that kirromycin, an Ef-Tu-specific antibiotic, had a significant effect on the nucleotide binding of unphosphorylated MtbEf-Tu but not on the phosphorylated protein. Our results show that the modulation of the MtbEf-Tu-GTP interaction by phosphorylation can have an impact on cellular protein synthesis and growth. These results also suggest that phosphorylation can change the sensitivity of the protein to the specific inhibitors. Thus, the efficacy of an inhibitor can also depend on the posttranslational modification(s) of the target and should be considered during the development of the molecule.


Asunto(s)
Guanosina Trifosfato/metabolismo , Mycobacterium tuberculosis/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Electroforesis en Gel Bidimensional , Immunoblotting , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Factor Tu de Elongación Peptídica/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas , Piridonas/farmacología
10.
mBio ; 11(6)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203749

RESUMEN

Salmonella enterica serovar Typhimurium is an intracellular pathogen that elicits nitric oxide (NO·) production by host macrophages. NO· is a potent antimicrobial mediator with diverse targets, including protein thiols and metal centers. The mobilization of zinc from metalloproteins by NO· increases the availability of free intracellular zinc, which is detrimental to bacterial cells, but the precise mechanism of zinc cytotoxicity is uncertain. Here, we show that excess zinc results in the mismetallation of the essential iron-containing enzyme peptide deformylase (PDF), thereby diminishing its activity. PDF mismetallation is observed in zinc-treated bacteria lacking the zinc exporters ZntA and ZitB and is also observed during nitrosative stress, suggesting that NO·-mediated zinc mobilization results in PDF mismetallation. However, NO· also inhibits PDF directly by S-nitrosylating the metal-binding Cys90 residue. These observations identify PDF as an essential bacterial protein that is subject to both direct and indirect inactivation by NO·, providing a novel mechanism of zinc toxicity and NO·-mediated antibacterial activity.IMPORTANCE We have previously shown that the host-derived antimicrobial mediator nitric oxide (NO·) mobilizes zinc from bacterial metalloproteins. The present study demonstrates that NO· inactivates the essential iron-containing enzyme peptide deformylase, both by promoting its mismetallation by zinc and by directly modifying its metal-binding site. We explain how free intracellular zinc is detrimental for cells and reveal a new mechanism of NO·-mediated bacterial growth inhibition that is distinct from previously known targets.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antiinfecciosos/farmacología , Hierro/metabolismo , Óxido Nítrico/farmacología , Salmonella typhimurium/efectos de los fármacos , Zinc/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Homeostasis , Macrófagos/microbiología , Metaloproteínas/metabolismo , Mutación , Estrés Nitrosativo , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Zinc/toxicidad
11.
mBio ; 9(4)2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108168

RESUMEN

Nitric oxide (NO·) produced by mammalian cells exerts antimicrobial actions that result primarily from the modification of protein thiols (S-nitrosylation) and metal centers. A comprehensive approach was used to identify novel targets of NO· in Salmonella enterica serovar Typhimurium (S. Typhimurium). Newly identified targets include zinc metalloproteins required for DNA replication and repair (DnaG, PriA, and TopA), protein synthesis (AlaS and RpmE), and various metabolic activities (ClpX, GloB, MetE, PepA, and QueC). The cytotoxic actions of free zinc are mitigated by the ZntA and ZitB zinc efflux transporters, which are required for S. Typhimurium resistance to zinc overload and nitrosative stress in vitro Zinc efflux also ameliorates NO·-dependent zinc mobilization following internalization by activated macrophages and is required for virulence in NO·-producing mice, demonstrating that host-derived NO· causes zinc stress in intracellular bacteria.IMPORTANCE Nitric oxide (NO·) is produced by macrophages in response to inflammatory stimuli and restricts the growth of intracellular bacteria. Mechanisms of NO·-dependent antimicrobial actions are incompletely understood. Here, we show that zinc metalloproteins are important targets of NO· in Salmonella, including the DNA replication proteins DnaG and PriA, which were hypothesized to be NO· targets in earlier studies. Like iron, zinc is a cofactor for several essential proteins but is toxic at elevated concentrations. This study demonstrates that NO· mobilizes free zinc in Salmonella and that specific efflux transporters ameliorate the cytotoxic effects of free zinc during infection.


Asunto(s)
Antibacterianos/metabolismo , Homeostasis/efectos de los fármacos , Óxido Nítrico/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo , Zinc/metabolismo , Zinc/toxicidad , Animales , Macrófagos/inmunología , Ratones , Viabilidad Microbiana , Células RAW 264.7 , Salmonelosis Animal/inmunología
12.
Artículo en Inglés | MEDLINE | ID: mdl-28649408

RESUMEN

PrkC is a conserved Ser/Thr protein kinase encoded in Bacillus anthracis genome. PrkC is shown to be important for B. anthracis pathogenesis, but little is known about its other functions and phosphorylated substrates. Systemic analyses indicate the compelling role of PrkC in phosphorylating multiple substrates, including the essential chaperone GroEL. Through mass spectrometry, we identified that PrkC phosphorylates GroEL on six threonine residues that are distributed in three canonical regions. Phosphorylation facilitates the oligomerization of GroEL to the physiologically active tetradecameric state and increases its affinity toward the co-chaperone GroES. Deletion of prkC in B. anthracis abrogates its ability to form biofilm. Overexpression of native GroEL recovers the biofilm-forming ability of prkC deletion strain. Similar overexpression of GroEL phosphorylation site mutants (Thr to Ala) does not augment biofilm formation. Further analyses indicate the phosphorylation of GroEL in diverse bacterial species. Thus, our results suggest that PrkC regulates biofilm formation by modulating the GroEL activity in a phosphorylation-dependent manner. The study deciphers the molecular signaling events that are important for biofilm formation in B. anthracis.

13.
Sci Rep ; 5: 15214, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26469538

RESUMEN

Extrapulmonary manifestations constitute 15 to 20% of tuberculosis cases, with lymph node tuberculosis (LNTB) as the most common form of infection. However, diagnosis and treatment advances are hindered by lack of understanding of LNTB biology. To identify host response, Mycobacterium tuberculosis infected lymph nodes from LNTB patients were studied by means of transcriptomics and quantitative proteomics analyses. The selected targets obtained by comparative analyses were validated by quantitative PCR and immunohistochemistry. This approach provided expression data for 8,728 transcripts and 102 proteins, differentially regulated in the infected human lymph node. Enhanced inflammation with upregulation of T-helper1-related genes, combined with marked dysregulation of matrix metalloproteinases, indicates tissue damage due to high immunoactivity at infected niche. This expression signature was accompanied by significant upregulation of an immunoregulatory gene, leukotriene A4 hydrolase, at both transcript and protein levels. Comparative transcriptional analyses revealed LNTB-specific perturbations. In contrast to pulmonary TB-associated increase in lipid metabolism, genes involved in fatty-acid metabolism were found to be downregulated in LNTB suggesting differential lipid metabolic signature. This study investigates the tissue molecular signature of LNTB patients for the first time and presents findings that indicate the possible mechanism of disease pathology through dysregulation of inflammatory and tissue-repair processes.


Asunto(s)
Perfilación de la Expresión Génica , Ganglios Linfáticos/metabolismo , Tuberculosis Ganglionar/patología , Adolescente , Adulto , Niño , Citocinas/genética , Citocinas/metabolismo , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Ácidos Grasos/metabolismo , Femenino , Humanos , Inmunohistoquímica , Metabolismo de los Lípidos/genética , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Transcriptoma , Tuberculosis Ganglionar/metabolismo
14.
PLoS Negl Trop Dis ; 8(11): e3315, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25412098

RESUMEN

BACKGROUND: Mycobacterium ulcerans, the causative agent of Buruli ulcer in humans, is unique among the members of Mycobacterium genus due to the presence of the virulence determinant megaplasmid pMUM001. This plasmid encodes multiple virulence-associated genes, including mup011, which is an uncharacterized Ser/Thr protein kinase (STPK) PknQ. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have characterized PknQ and explored its interaction with MupFHA (Mup018c), a FHA domain containing protein also encoded by pMUM001. MupFHA was found to interact with PknQ and suppress its autophosphorylation. Subsequent protein-protein docking and molecular dynamic simulation analyses showed that this interaction involves the FHA domain of MupFHA and PknQ activation loop residues Ser170 and Thr174. FHA domains are known to recognize phosphothreonine residues, and therefore, MupFHA may be acting as one of the few unusual FHA-domain having overlapping specificity. Additionally, we elucidated the PknQ-dependent regulation of MupDivIVA (Mup012c), which is a DivIVA domain containing protein encoded by pMUM001. MupDivIVA interacts with MupFHA and this interaction may also involve phospho-threonine/serine residues of MupDivIVA. CONCLUSIONS/SIGNIFICANCE: Together, these results describe novel signaling mechanisms in M. ulcerans and show a three-way regulation of PknQ, MupFHA, and MupDivIVA. FHA domains have been considered to be only pThr specific and our results indicate a novel mechanism of pSer as well as pThr interaction exhibited by MupFHA. These results signify the need of further re-evaluating the FHA domain -pThr/pSer interaction model. MupFHA may serve as the ideal candidate for structural studies on this unique class of modular enzymes.


Asunto(s)
Proteínas Bacterianas/química , Factores de Transcripción Forkhead/química , Mycobacterium ulcerans/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Bacterianas/metabolismo , Biología Computacional , Factores de Transcripción Forkhead/metabolismo , Simulación de Dinámica Molecular , Mycobacterium ulcerans/enzimología , Mycobacterium ulcerans/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína
15.
Sci Rep ; 3: 2264, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23877358

RESUMEN

Mycobacterium tuberculosis modulates expression of various metabolism-related genes to adapt in the adverse host environment. The gene coding for M. tuberculosis S-adenosylhomocysteine hydrolase (Mtb-SahH) is essential for optimal growth and the protein product is involved in intermediary metabolism. However, the relevance of SahH in mycobacterial physiology is unknown. In this study, we analyze the role of Mtb-SahH in regulating homocysteine concentration in surrogate host Mycobacterium smegmatis. Mtb-SahH catalyzes reversible hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine and we demonstrate that the conserved His363 residue is critical for bi-directional catalysis. Mtb-SahH is regulated by serine/threonine phosphorylation of multiple residues by M. tuberculosis PknB. Major phosphorylation events occur at contiguous residues Thr219, Thr220 and Thr221, which make pivotal contacts with cofactor NAD⁺. Consequently, phosphorylation negatively modulates affinity of enzyme towards NAD⁺ as well as SAH-synthesis. Thr219, Thr220 and Thr221 are essential for enzyme activity, and therefore, responsible for SahH-mediated regulation of homocysteine.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Homocisteína/metabolismo , Mycobacterium tuberculosis/enzimología , Adenosilhomocisteinasa/química , Activación Enzimática , Histidina/química , Hidrólisis , Cinética , Redes y Vías Metabólicas , Modelos Moleculares , Mycobacterium/enzimología , Mycobacterium/metabolismo , Fosforilación , Conformación Proteica , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA