Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835060

RESUMEN

Controlling post-prandial hyperglycemia and hyperlipidemia, particularly by regulating the activity of digestive enzymes, allows managing type 2 diabetes and obesity. The aim of this study was to assess the effects of TOTUM-63, a formulation of five plant extracts (Olea europaea L., Cynara scolymus L., Chrysanthellum indicum subsp. afroamericanum B.L.Turner, Vaccinium myrtillus L., and Piper nigrum L.), on enzymes involved in carbohydrate and lipid absorption. First, in vitro inhibition assays were performed by targeting three enzymes: α-glucosidase, α-amylase, and lipase. Then, kinetic studies and binding affinity determinations by fluorescence spectrum changes and microscale thermophoresis were performed. The in vitro assays showed that TOTUM-63 inhibited all three digestive enzymes, particularly α-glucosidase (IC50 of 13.1 µg/mL). Mechanistic studies on α-glucosidase inhibition by TOTUM-63 and molecular interaction experiments indicated a mixed (full) inhibition mechanism, and higher affinity for α-glucosidase than acarbose, the reference α-glucosidase inhibitor. Lastly, in vivo data using leptin receptor-deficient (db/db) mice, a model of obesity and type 2 diabetes, indicated that TOTUM-63 might prevent the increase in fasting glycemia and glycated hemoglobin (HbA1c) levels over time, compared with the untreated group. These results show that TOTUM-63 is a promising new approach for type 2 diabetes management via α-glucosidase inhibition.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de Glicósido Hidrolasas , Extractos Vegetales , alfa-Glucosidasas , Animales , Ratones , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Cinética , Lipasa/metabolismo , Obesidad , Extractos Vegetales/farmacología
2.
Diabetes Obes Metab ; 24(12): 2331-2340, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35837981

RESUMEN

AIM: The plant-based polyphenol-rich extract TOTUM-63 improves glucose homeostasis in various preclinical models of obesity and type 2 diabetes (T2D). A pilot exploratory study showed that TOTUM-63 has good safety and tolerability profiles, and beneficial effects on postprandial glucose control in healthy individuals with overweight. The aim of this study was to assess the effects of TOTUM-63 on glycaemic control in individuals with prediabetes or early stage newly-diagnosed T2D (which does not require pharmacological treatment). MATERIALS AND METHODS: This study was a multicentre, randomized, double-blind, placebo-controlled trial. Individuals with prediabetes or early stage newly-diagnosed T2D and with overweight/abdominal obesity received TOTUM-63 (5 g/day) or placebo for 6 months. The primary outcome was the change in fasting blood glucose. RESULTS: Fifty-one participants (age: 57.1 ± 10 years; body mass index: 31.3 ± 5.7 kg.m2 ; 35 women and 16 men) completed the study (n = 38 TOTUM-63, n = 13 placebo). After 6 months, blood glucose concentration after fasting and after the 2-h oral glucose tolerance test was reduced in the TOTUM-63-treated group compared with the placebo group (placebo-corrected difference between baseline and month 6: -0.71 mmol/L, p < .05, and -1.93 mmol/L, p < .05, respectively). TOTUM-63 was safe and well tolerated and significantly reduced body weight gain (-1.9 kg; p < .05), waist circumference (-4.5 cm; p < .001), circulating triglycerides (-0.54 mmol/L; p < .01) and low-density lipoprotein-cholesterol (-0.38 mmol/L; p < .05) compared with placebo. CONCLUSIONS: TOTUM-63 lowered fasting blood glucose in participants with impaired fasting glycaemia and glucose intolerance. Moreover, TOTUM-63 showed a good safety and tolerability profile and improved several metabolic syndrome features. Therefore, TOTUM-63 is a promising candidate for T2D prevention.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estado Prediabético , Masculino , Femenino , Humanos , Persona de Mediana Edad , Anciano , Estado Prediabético/diagnóstico , Estado Prediabético/tratamiento farmacológico , Glucemia/metabolismo , Polifenoles/uso terapéutico , Control Glucémico , Sobrepeso/complicaciones , Sobrepeso/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Método Doble Ciego , Obesidad/complicaciones , Obesidad/tratamiento farmacológico
3.
Nutr Metab Cardiovasc Dis ; 32(7): 1797-1807, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618560

RESUMEN

BACKGROUND AND AIMS: TOTUM-63, a fibre and polyphenol rich plant-based composition, has been demonstrated to significantly improve body weight and glucose homeostasis in animal models of obesity. Our study aimed at exploring whether the mechanisms include modulation of gut (glucose-dependent insulinotropic peptide (GIP), glucagon-like petide-1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY)) and pancreatic (insulin, glucagon) hormones, all important regulators of glucose control, appetite and body weight. METHODS AND RESULTS: Male C57BL/6JRJ mice were assigned to either standard chow (CON), high fat diet (HF, 60% energy from fat) or HF-TOTUM-63 (HF diet 60% supplemented with TOTUM-63 2.7%) for 10 weeks. In vivo glucose homeostasis (oral glucose tolerance test (OGTT), intraperitoneal pyruvate tolerance test (ipPTT)), glucose-induced portal vein hormone concentration, gut hormone gene expression and protein content as well as enteroendocrine cell contents were assessed at the end of the dietary intervention. The present study evidenced that TOTUM-63 reduced food intake, limited weight gain and improved glucose and pyruvate tolerance of HF-fed animals. This was associated with an increase in PYY content in the colon, an altered pattern of PYY secretion between fasted and glucose-stimulated states, and with a significant improvement in the portal vein concentration of GLP-1, insulin and glucagon, but not GIP and CCK, in response to glucose stimulation. CONCLUSION: Overall, these data suggest that TOTUM-63 might have a specific impact on gut L-cells and on the expression and secretion of GLP-1 and PYY incretins, potentially contributing to the reduced food intake, body weight gain and improved glucose homeostasis.


Asunto(s)
Glucagón , Extractos Vegetales/farmacología , Polifenoles , Animales , Glucemia/metabolismo , Peso Corporal , Dieta Alta en Grasa , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Péptido YY , Polifenoles/farmacología , Piruvatos , Aumento de Peso
4.
Am J Physiol Endocrinol Metab ; 320(6): E1119-E1137, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33938234

RESUMEN

Global prevalence of type 2 diabetes (T2D) is rising and may affect 700 million people by 2045. Totum-63 is a polyphenol-rich natural composition developed to reduce the risk of T2D. We first investigated the effects of Totum-63 supplementation in high-fat diet (HFD)-fed mice for up to 16 wk and thereafter assessed its safety and efficacy (2.5 g or 5 g per day) in 14 overweight men [mean age 51.5 yr, body mass index (BMI) 27.6 kg·m-2] for 4 wk. In HFD-fed mice, Totum-63 reduced body weight and fat mass gain, whereas lean mass was unchanged. Moreover, fecal energy excretion was higher in Totum-63-supplemented mice, suggesting a reduction of calorie absorption in the digestive tract. In the gut, metagenomic analyses of fecal microbiota revealed a partial restoration of HFD-induced microbial imbalance, as shown by principal coordinate analysis of microbiota composition. HFD-induced increase in HOMA-IR score was delayed in supplemented mice, and insulin response to an oral glucose tolerance test was significantly reduced, suggesting that Totum-63 may prevent HFD-related impairments in glucose homeostasis. Interestingly, these improvements could be linked to restored insulin signaling in subcutaneous adipose tissue and soleus muscle. In the liver, HFD-induced steatosis was reduced by 40% (as shown by triglyceride content). In the subsequent study in men, Totum-63 (5 g·day-1) improved glucose and insulin responses to a high-carbohydrate breakfast test (84% kcal carbohydrates). It was well tolerated, with no clinically significant adverse events reported. Collectively, these data suggest that Totum-63 could improve glucose homeostasis in both HFD-fed mice and overweight individuals, presumably through a multitargeted action on different metabolic organs.NEW & NOTEWORTHY Totum-63 is a novel polyphenol-rich natural composition developed to reduce the risk of T2D. Totum-63 showed beneficial effects on glucose homeostasis in HFD-fed mice, presumably through a multitargeted action on different metabolic organs. Totum-63 was well tolerated in humans and improved postprandial glucose and insulin responses to a high-carbohydrate breakfast test.


Asunto(s)
Glucemia/efectos de los fármacos , Hiperglucemia/prevención & control , Extractos Vegetales/farmacología , Adulto , Animales , Glucemia/metabolismo , Chrysanthemum/química , Cynara scolymus/química , Control Glucémico/métodos , Homeostasis/efectos de los fármacos , Humanos , Hiperglucemia/sangre , Hiperglucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Olea/química , Sobrepeso/sangre , Sobrepeso/tratamiento farmacológico , Sobrepeso/metabolismo , Proyectos Piloto , Piper nigrum/química , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Periodo Posprandial/efectos de los fármacos , Investigación Biomédica Traslacional , Vaccinium myrtillus/química
5.
Int J Obes (Lond) ; 45(9): 2016-2027, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34079069

RESUMEN

BACKGROUND/OBJECTIVES: The worldwide prevalence of obesity, metabolic syndrome and type 2 diabetes (T2D) is reaching epidemic proportions that urge the development of new management strategies. Totum-63 is a novel, plant-based polyphenol-rich active principle that has been shown to reduce body weight, fasting glycemia, glucose intolerance, and fatty liver index in obese subjects with prediabetes. Here, we investigated the effects and underlying mechanism(s) of Totum-63 on metabolic homeostasis in insulin-resistant obese mice. METHODS: Male C57Bl6/J mice were fed a high-fat diet for 12 weeks followed by supplementation with Totum-63 for 4 weeks. The effects on whole-body energy and metabolic homeostasis, as well as on tissue-specific inflammation and insulin sensitivity were assessed using a variety of immunometabolic phenotyping tools. RESULTS: Totum-63 decreased body weight and fat mass in obese mice, without affecting lean mass, food intake and locomotor activity, and increased fecal energy excretion and whole-body fatty acid oxidation. Totum-63 reduced fasting plasma glucose, insulin and leptin levels, and improved whole-body insulin sensitivity and peripheral glucose uptake. The expression of insulin receptor ß and the insulin-induced phosphorylation of Akt/PKB were increased in liver, skeletal muscle, white adipose tissue (WAT) and brown adipose tissue (BAT). Hepatic steatosis was also decreased by Totum-63 and associated with a lower expression of genes involved in fatty acid uptake, de novo lipogenesis, inflammation, and fibrosis. Furthermore, a significant reduction in pro-inflammatory macrophages was also observed in epidydimal WAT. Finally, a potent decrease in BAT mass associated with enhanced tissue expression of thermogenic genes was found, suggesting BAT activation by Totum-63. CONCLUSIONS: Our results show that Totum-63 reduces inflammation and improves insulin sensitivity and glucose homeostasis in obese mice through pleiotropic effects on various metabolic organs. Altogether, plant-derived Totum-63 might constitute a promising novel nutritional supplement for alleviating metabolic dysfunctions in obese people with or without T2D.


Asunto(s)
Composición Corporal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles/farmacología , Animales , Composición Corporal/fisiología , Modelos Animales de Enfermedad , Inflamación/prevención & control , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL/metabolismo
6.
Am J Physiol Endocrinol Metab ; 317(1): E11-E24, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964704

RESUMEN

The health-promoting effects of physical activity to prevent and treat metabolic disorders are numerous. However, the underlying molecular mechanisms are not yet completely deciphered. In recent years, studies have referred to the liver as an endocrine organ, since it releases specific proteins called hepatokines. Some of these hepatokines are involved in whole body metabolic homeostasis and are theorized to participate in the development of metabolic disease. In this regard, the present review describes the role of Fibroblast Growth Factor 21, Fetuin-A, Angiopoietin-like protein 4, and Follistatin in metabolic disease and their production in response to acute exercise. Also, we discuss the potential role of hepatokines in mediating the beneficial effects of regular exercise and the future challenges to the discovery of new exercise-induced hepatokines.


Asunto(s)
Citocinas/metabolismo , Ejercicio Físico/fisiología , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Enfermedades Metabólicas/terapia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo
7.
J Physiol ; 593(12): 2665-77, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25820551

RESUMEN

KEY POINTS: Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. ABSTRACT: Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats.


Asunto(s)
Dieta , Receptores ErbB/metabolismo , Neurregulina-1/metabolismo , Obesidad/metabolismo , Condicionamiento Físico Animal/fisiología , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animales , Receptores ErbB/genética , Masculino , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Neurregulina-1/genética , ARN Mensajero/metabolismo , Ratas Wistar , Transducción de Señal , Inhibidor Tisular de Metaloproteinasa-3/metabolismo
8.
J Sports Sci Med ; 13(3): 689-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25177200

RESUMEN

The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC) contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON) reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max). In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON) and downhill (ECC) running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%), positive (+15% incline: CON+15%) and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%). Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec). Conversely, VO2 values were lower (p < 0.05) in the ECC-15% than in the CON+15% condition (CON+15% VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds). Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases. Key PointsVO2 in rats during treadmill race in eccentric and concentric conditions were measured.A novel breath-by-breath device allowing direct access to the animal was used.THREE DIFFERENT SLOPES: +15%, -15% and -30% were used.VO2 values obtained in the -30% eccentric and the +15% concentric conditions were not significantly different.

9.
Physiol Rep ; 12(8): e15993, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627215

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health issue with a worldwide prevalence of 30%-32%. In animal models, voluntary exercise may be an alternative to forced physical activity, avoiding stress, potential injuries, and being logistically simpler. Here, we assessed voluntary exercise (Vex) in Sprague-Dawley rats fed a high-fat, high-cholesterol diet for 18 weeks to induce MASLD. We quantified workload (speed and distance) using exercise wheels and evaluated energy expenditure using calorimetric cages. MASLD progression was assessed using circulating and hepatic biochemical and gene markers of steatosis, inflammation, and fibrosis. The animals ran an average of 301 km during the study period, with the average daily distance peaking at 4937 m/day during Weeks 3-4 before decreasing to 757 m/day by the end of the study. Rats exposed to Vex showed no improvement in any of the MASLD-associated features, such as steatosis, inflammation, or fibrosis. Rats exposed to Vex exhibited a higher total energy expenditure during the night phase (+0.35 kcal/h; p = 0.003) without resulting in any effect on body composition. We conclude that, in our experimental conditions, Vex failed to prevent MASLD progression in male Sprague-Dawley rats exposed to a high-fat high-cholesterol diet for 18 weeks.


Asunto(s)
Hígado Graso , Enfermedades Metabólicas , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Hígado Graso/metabolismo , Dieta Alta en Grasa/efectos adversos , Colesterol , Inflamación , Ejercicio Físico , Fibrosis , Progresión de la Enfermedad
10.
Front Cardiovasc Med ; 11: 1342388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317864

RESUMEN

Introduction: Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods: C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results: The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion: The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.

11.
Eur J Nutr ; 52(8): 1843-52, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23266743

RESUMEN

PURPOSE: To determine the effect of 4 weeks of supplementation, then, withdrawal of a dietary supplement (DS) containing red yeast rice extract, policosanol and artichoke leaf extract at twice the recommended daily dose (6 tablets, 6-TAB) compared to the usual dose (3-TAB) or to a placebo (PLA), on blood lipid profiles and safety biomarkers. METHODS: Forty-five healthy subjects (15 per group), with untreated hypercholesterolaemia, were included in this randomised, double-blind, placebo-controlled clinical trial. RESULTS: After 4 weeks of supplementation, LDL-C was significantly lower in 6-TAB (-0.21 g/l; 95 % CI -0.38 to -0.03 g/l; p = 0.0217) and 3-TAB (-0.25 g/l; 95 % CI -0.42 to -0.07 g/l; p = 0.0071) compared to PLA, although no difference in LDL-cholesterol was observed between the two groups, while no effect was seen on triacylglycerol and HDL-cholesterol. Four weeks after the end of supplementation, no difference in LDL-C was seen between the PLA group and the DS-treated groups. The muscle breakdown biomarkers, as well as biomarkers of liver and renal function, were altered by neither dose of the DS. Acute application of the DS on permeabilised skeletal muscle fibres of rats did not induce deleterious effects on mitochondrial function. CONCLUSIONS: Supplementation with twice the recommended dose of the DS was effective in reducing LDL-cholesterol and appeared safe, but according to the present results, no additional benefit could be achieved compared to the recommended dose.


Asunto(s)
LDL-Colesterol/sangre , Suplementos Dietéticos , Hipercolesterolemia/sangre , Extractos Vegetales/administración & dosificación , Adolescente , Adulto , Anciano , Animales , Anticolesterolemiantes/administración & dosificación , Productos Biológicos/administración & dosificación , Biomarcadores/sangre , HDL-Colesterol/sangre , Cynara scolymus/química , Método Doble Ciego , Determinación de Punto Final , Alcoholes Grasos/administración & dosificación , Femenino , Humanos , Hipercolesterolemia/tratamiento farmacológico , Estilo de Vida , Masculino , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Hojas de la Planta/química , Ratas , Ratas Wistar , Ingesta Diaria Recomendada , Triglicéridos/sangre , Adulto Joven
12.
J Strength Cond Res ; 27(11): 3076-83, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23439345

RESUMEN

Sports drinks are often used before, during, and after tennis tournaments, but their ability to influence physiological and psychological variables and the characteristics of tennis match play remains uncertain. The objective of this study was to evaluate the impact of ingesting specially formulated pre-exercise, endurance, and recovery sports drinks on glycemia and performance indices during a simulated tennis tournament. Eight well-trained male tennis players performed two 3-match round-robin tennis tournaments although ingesting sports drinks (SPDs) or placebos (PLAs) before, during, and after each match (crossover study design). Before the first tournament, match and drink order were randomized (SPDs or PLAs first) and players were placed under controlled nutritional and hydration conditions. Glycemia, heart rate response, rate of perceived exertion, and notational/match analysis were assessed during each match. Sports drinks maintained higher glycemia levels during match 2 and 3 of the tennis tournament compared with PLAs (p < 0.01). Moreover, higher mean heart rates (p < 0.01) and stroke frequencies (p < 0.01) concomitantly with lower rates of perceived exertion (p < 0.01) were recorded throughout the duration of the tournament, when players used the SPDs. During a 3-match tennis tournament, SPDs allow higher stroke frequency during play, with decreased rates of perceived exertion.


Asunto(s)
Rendimiento Atlético/fisiología , Bebidas , Ingestión de Líquidos/fisiología , Tenis/fisiología , Adulto , Glucemia/metabolismo , Estudios Cruzados , Método Doble Ciego , Frecuencia Cardíaca , Humanos , Masculino , Fatiga Muscular , Esfuerzo Físico , Adulto Joven
13.
Nutr Res ; 118: 70-84, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37598559

RESUMEN

Global prevalence of obesity and type 2 diabetes are rapidly increasing to pandemic proportions. A novel supplement composed of 5 plant extracts from olive leaf, bilberry, artichoke, chrysanthellum, and black pepper was designed to prevent type 2 diabetes development in people at risk. It was previously shown to improve body weight and glucose control in preclinical rodent models, with these effects being accompanied by increased fecal energy excretion and in vitro inhibition of several digestive enzymes. Thus, we hypothesized that, in mice fed a high-fat diet (HFD), a single dose of this botanical supplementation would decrease the responses to oral fat and carbohydrate tolerance tests, and that chronic supplementation would result in increased fecal triglyceride content. We showed that acute administration in HFD-fed mice (1.452 g/kg body weight) markedly reduced circulating triglycerides following an oral lipid gavage, whereas glycemic responses to various carbohydrate tests were only mildly affected. When incorporated into the food (2.5%) of HFD-fed mice, chronic supplementation prevented body weight gain and improved glucose homeostasis and lipid tolerance. Fecal free fatty acid content, but not triglyceride, was significantly increased in supplemented animals, suggesting reduced lipid absorption in the digestive tract. Congruently, this botanical supplementation downregulated several genes associated with fatty acid transport whose expression was increased by HFD, principally in the jejunum. This study provides novel insights as for the mode of action behind the antiobesity effect of this plant-based supplementation, in HFD-fed mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Extractos Vegetales , Humanos , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Polifenoles/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Aumento de Peso , Peso Corporal , Triglicéridos/metabolismo , Nutrientes , Carbohidratos , Ratones Endogámicos C57BL
14.
Nutrients ; 15(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37111121

RESUMEN

TOTUM-070 is a patented polyphenol-rich blend of five different plant extracts showing separately a latent effect on lipid metabolism and potential synergistic properties. In this study, we investigated the health benefit of such a formula. Using a preclinical model of high fat diet, TOTUM-070 (3 g/kg of body weight) limited the HFD-induced hyperlipemia with a reduction in triglyceride (-32% after 6 weeks; -20.3% after 12 weeks) and non-HDL cholesterol levels (-21% after 6 weeks; -38.4% after 12 weeks). To further investigate such a benefit and its underlying mechanisms in humans, we designed an ex vivo clinical approach to collect the circulating bioactives resulting from TOTUM-070 ingestion and to determine their biological activities on human hepatocytes. Human serum was obtained from healthy subjects before and after intake of TOTUM-070 (4995 mg). The presence of circulating metabolites was assessed by UPLC-MS/MS. Serum containing metabolites was further incubated with hepatocytes cultured in a lipotoxic environment (palmitate, 250 µM). RNA sequencing analyses show that lipid metabolism was one of the most impacted processes. Using histologic, proteomic, and enzymatic assays, the effects of human TOTUM-070 bioactives on hepatocyte metabolism were characterized by (1) the inhibition of lipid storage, including both (2) triglycerides (-41%, p < 0.001) and (3) cholesterol (-50%, p < 0.001) intracellular content, (4) a reduced de novo cholesterol synthesis (HMG-CoA reductase activity -44%, p < 0.001), and (5) a lowered fatty acid synthase protein level (p < 0.001). Altogether, these data support the beneficial impact of TOTUM-070 on lipid metabolism and provide new biochemical insights in human mechanisms occurring in liver cells.


Asunto(s)
Metabolismo de los Lípidos , Polifenoles , Humanos , Polifenoles/farmacología , Polifenoles/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Hepatocitos , Colesterol , Triglicéridos , Dieta Alta en Grasa , Hígado/metabolismo
15.
Nutrients ; 15(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38140315

RESUMEN

Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide, and hypercholesterolemia is a central risk factor for atherosclerosis. This study evaluated the effects of Totum-070, a plant-based polyphenol-rich supplement, in hamsters with high-fat diet (HFD)-induced dyslipidemia. The molecular mechanisms of action were explored using human Caco2 enterocytes. Totum-070 supplementation reduced the total cholesterol (-41%), non-HDL cholesterol (-47%), and triglycerides (-46%) in a dose-dependent manner, compared with HFD. HFD-induced hepatic steatosis was also significantly decreased by Totum-070, an effect associated with the reduction in various lipid and inflammatory gene expression. Upon challenging with olive oil gavage, the post-prandial triglyceride levels were strongly reduced. The sterol excretion in the feces was increased in the HFD-Totum-070 groups compared with the HFD group and associated with reduction of intestinal cholesterol absorption. These effects were confirmed in the Caco2 cells, where incubation with Totum-070 inhibited cholesterol uptake and apolipoprotein B secretion. Furthermore, a microbiota composition analysis revealed a strong effect of Totum-070 on the alpha and beta diversity of bacterial species and a significant decrease in the Firmicutes to Bacteroidetes ratio. Altogether, our findings indicate that Totum-070 lowers hypercholesterolemia by reducing intestinal cholesterol absorption, suggesting that its use as dietary supplement may be explored as a new preventive strategy for cardiovascular diseases.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Hiperlipidemias , Cricetinae , Animales , Humanos , Hipercolesterolemia/etiología , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Dieta Alta en Grasa/efectos adversos , Polifenoles/farmacología , Polifenoles/metabolismo , Células CACO-2 , Mesocricetus , Colesterol/metabolismo , Hiperlipidemias/metabolismo , Triglicéridos/metabolismo , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Hígado/metabolismo
16.
Nutrients ; 13(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066988

RESUMEN

Obesity and prediabetes are the two strongest risk factors of type 2 diabetes. It has been reported that TOTUM-63, a polyphenol-rich plant extract, has beneficial effects on body weight (BW) and insulin resistance in mice fed a high fat diet (HFD). The study aim was to determine whether high-intensity interval training (HIIT) and/or TOTUM-63 supplementation improved body composition and glycemic control and gut microbiota composition in a Western diet-induced obesity rat model. Wistar rats received a standard diet (CTRL; control; n = 12) or HFD (HFD; n = 48) for 16 weeks. Then, HFD rats were divided in four groups: HFD, HFD + TOTUM-63 (T63), HFD + HIIT (HIIT), and HFD + HIIT +T63 (HIIT + T63). Training was performed 4 days/week for 12 weeks. TOTUM-63 was included in diet composition (2%). The HIIT + T63 combination significantly limited BW gain, without any energy intake modulation, and improved glycemic control. BW variation was correlated with increased α-diversity of the colon mucosa microbiota in the HIIT + T63 group. Moreover, the relative abundance of Anaeroplasma, Christensenellaceae and Oscillospira was higher in the HIIT + T63 group. Altogether, these results suggest that the HIIT and TOTUM-63 combination could be proposed for the management of obesity and prediabetes.


Asunto(s)
Suplementos Dietéticos , Entrenamiento de Intervalos de Alta Intensidad , Obesidad/terapia , Condicionamiento Físico Animal/métodos , Extractos Vegetales/administración & dosificación , Polifenoles/administración & dosificación , Animales , Composición Corporal/fisiología , Terapia Combinada , Diabetes Mellitus Tipo 2/prevención & control , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/fisiología , Control Glucémico , Mucosa Intestinal/microbiología , Masculino , Obesidad/etiología , Obesidad/fisiopatología , Estado Prediabético/etiología , Estado Prediabético/fisiopatología , Estado Prediabético/terapia , Ratas , Ratas Wistar , Aumento de Peso/fisiología
17.
Arch Physiol Biochem ; 126(4): 320-325, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30449185

RESUMEN

Context: Neuregulin 1 (NRG1) and ErbB receptors are involved in glucose homeostasis. However, the effects of the neuregulin 1-ErbB pathway activation on glucose metabolism in liver are controversial.Objective: Assess NRG1 and ErbB signalling in liver and the effects of 8-week treatment with NRG1 on glucose homeostasis in diabetic db/db mice and in control healthy mice.Results: NRG1 improved glucose, insulin and insulin sensitivity index during OGTT in db/db mice, but not in control mice. Compared with healthy mice, phosphorylation of p38, ErbB-1 and ErbB-3 was increased in diabetic mice, and neuregulin 1 treatment increased phosphorylation of p38 and ErbB-4. Conversely, the AKT/FOXO1 pathway was not affected by the 8-week treatment with NRG1.Conclusion: Diabetic mice showed altered NRG1-ErbB pathway in the liver compared with healthy mice. Moreover, chronic NRG1 treatment increased p38 phosphorylation in liver and improved glucose tolerance in diabetic mice, but not in control mice.


Asunto(s)
Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Neurregulina-1/farmacología , Animales , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Neurregulina-1/uso terapéutico , Factores de Tiempo , Resultado del Tratamiento
18.
Curr Opin Pharmacol ; 8(3): 333-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18243052

RESUMEN

Statin drugs represent a major improvement in the treatment of hypercholesterolemia that constitutes the main origin of atherosclerosis, leading to coronary heart disease. Besides the tremendous beneficial effects of statins, various forms of muscular toxicity (myalgia, cramp, exercise intolerance, fatigability) occur frequently. Many hypotheses were proposed to explain statin myotoxicity. The goal of this review is to highlight some of the most recent findings that can account for interpreting the pathophysiological mechanisms for statin-induced myotoxicity. Statin-induced myotoxicity appears multifactorial. Apart from the deleterious effect due to a reduction in cholesterol biosynthesis, statins have a direct effect on the respiratory chain of the mitochondria. It is proposed that mitochondrial impairment leads to a mitochondrial calcium leak that directly interferes with the regulation of sarcoplasmic reticulum calcium cycling without excluding a direct effect of statin on the sarcoplasmic reticulum. Both mitochondrial and calcium impairments may account for apoptosis process, oxidative stress, and muscle remodeling and degeneration that have been extensively reported to explain statin myotoxicity and functional symptoms described by treated patients.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/toxicidad , Músculo Esquelético/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/fisiología
19.
Oxid Med Cell Longev ; 2019: 1965364, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396298

RESUMEN

BACKGROUND AND AIM: Exercise is an effective strategy to reduce obesity-induced oxidative stress. The purpose of this study was to compare the effects of two training modalities (moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT)) on the pro/antioxidant status of different tissues in obese Zucker rats. METHODS: Eight-week-old male Zucker rats (fa/fa, n = 36) were subdivided in three groups: MICT, HIIT, and control (no exercise) groups. Trained animals ran on a treadmill (0° slope), 5 days/week for 10 weeks (MICT: 51 min at 12 m·min-1; HIIT: 6 sets of 3 min at 10 m·min-1 followed by 4 min at 18 m·min-1). Epididymal (visceral) and subcutaneous adipose tissue, gastrocnemius muscle, and plasma samples were collected to measure oxidative stress markers (advanced oxidation protein products (AOPP), oxidized low-density lipoprotein (oxLDL)), antioxidant system markers (ferric-reducing ability of plasma (FRAP), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities), and prooxidant enzymes (NADPH oxidase and xanthine oxidase (XO) activities, myeloperoxidase content). RESULTS: Compared with the control, MICT increased GPx and catalase activities and the FRAP level in epididymal adipose tissue. HIIT increased the AOPP level in subcutaneous adipose tissue. In the muscle, HIIT increased both SOD and GPx activities and reduced the AOPP level, whereas MICT increased only SOD activity. Finally, plasma myeloperoxidase content was similarly decreased by both training modalities, whereas oxLDL was reduced only in the MICT group. CONCLUSION: Both HIIT and MICT improved the pro/antioxidant status. However, HIIT was more efficient than MICT in the skeletal muscle, whereas MICT was more efficient in epididymal adipose tissue. This suggests that oxidative stress responses to HIIT and MICT are tissue-specific. This could result in ROS generation via different pathways in these tissues. From a practical point of view, the two training modalities should be combined to obtain a global response in people with obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo , Condicionamiento Físico Animal , Animales , Antioxidantes/metabolismo , Glutatión Peroxidasa/metabolismo , Entrenamiento de Intervalos de Alta Intensidad , Lipoproteínas LDL/sangre , Masculino , Malondialdehído/sangre , NADPH Oxidasas/metabolismo , Obesidad/metabolismo , Obesidad/patología , Oxidantes/metabolismo , Ratas , Ratas Zucker , Superóxido Dismutasa/metabolismo
20.
Cells ; 8(1)2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30634469

RESUMEN

Crohn's disease is characterized by abnormal ileal colonization by adherent-invasive E. coli (AIEC) and expansion of mesenteric adipose tissue. This study assessed the preventive effect of spontaneous physical activity (PA) on the gut-adipose tissue in a mouse model that mimics Crohn's disease susceptibility. Thirty-five CEABAC10 male mice performed spontaneous PA (wheel group; n = 24) or not (controls; n = 11) for 12 weeks. At week 12, mice were orally challenged with the AIEC LF82 strain for 6 days. Body composition, glycaemic control, intestinal permeability, gut microbiota composition, and fecal short-chain fatty acids were assessed in both groups. Animals were fed a high fat/high sugar diet throughout the study. After exposure to AIEC, mesenteric adipose tissue weight was lower in the wheel group. Tight junction proteins expression increased with spontaneous PA, whereas systemic lipopolysaccharides were negatively correlated with the covered distance. Bifidobacterium and Lactobacillus decreased in controls, whereas Oscillospira and Ruminococcus increased in the wheel group. Fecal propionate and butyrate were also higher in the wheel group. In conclusion, spontaneous physical activity promotes healthy gut microbiota composition changes and increases short-chain fatty acids in CEABAC10 mice fed a Western diet and exposed to AIEC to mimic Crohn's disease.


Asunto(s)
Tejido Adiposo/metabolismo , Enfermedad de Crohn/prevención & control , Intestinos/microbiología , Esfuerzo Físico , Animales , Adhesión Bacteriana , Enfermedad de Crohn/microbiología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/metabolismo , Ácidos Grasos Volátiles/metabolismo , Femenino , Microbioma Gastrointestinal , Glucosa/metabolismo , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA