Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429579

RESUMEN

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Asunto(s)
Epilepsia , Cara/anomalías , Dedos/anomalías , Trastornos del Crecimiento , Hipogonadismo , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Obesidad , Humanos , Ratones , Animales , Discapacidad Intelectual/genética , Proteínas Represoras , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Transcripción
2.
Nat Rev Neurosci ; 20(1): 34-48, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30464208

RESUMEN

Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.


Asunto(s)
Encéfalo/metabolismo , Diferenciación Celular/fisiología , Cognición/fisiología , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Animales , Encéfalo/citología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Humanos , Células-Madre Neurales/citología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neurogénesis/fisiología
3.
BMC Biol ; 21(1): 240, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907898

RESUMEN

BACKGROUND: PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS: Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS: In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.


Asunto(s)
Quinasas Ciclina-Dependientes , Drosophila melanogaster , Animales , Ratones , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Fosforilación , Proteína de Unión al GTP rhoA/metabolismo
4.
BMC Biol ; 20(1): 115, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581583

RESUMEN

BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.


Asunto(s)
Neuronas , Transducción de Señal , Células Cultivadas , Neuronas/metabolismo , Fosforilación , Transducción de Señal/fisiología
5.
Proc Natl Acad Sci U S A ; 115(22): E5164-E5173, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760073

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.


Asunto(s)
Citofagocitosis/fisiología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Células Mieloides/citología , Enfermedad de Parkinson/fisiopatología , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Línea Celular , Drosophila , Humanos , Ratones , Microglía , Células Mieloides/fisiología , Transducción de Señal/fisiología
6.
J Biol Chem ; 294(21): 8617-8629, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30967472

RESUMEN

We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F4/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Proteínas Represoras/biosíntesis , Accidente Cerebrovascular/metabolismo , Transactivadores/biosíntesis , Secuencias de Aminoácidos , Animales , Muerte Celular , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F4/genética , Ratones , Ratones Transgénicos , Neuronas/patología , Proteínas Represoras/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Transactivadores/genética
7.
J Biol Chem ; 293(25): 9580-9593, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29700116

RESUMEN

Many mutations in genes encoding proteins such as Parkin, PTEN-induced putative kinase 1 (PINK1), protein deglycase DJ-1 (DJ-1 or PARK7), leucine-rich repeat kinase 2 (LRRK2), and α-synuclein have been linked to familial forms of Parkinson's disease (PD). The consequences of these mutations, such as altered mitochondrial function and pathological protein aggregation, are starting to be better understood. However, little is known about the mechanisms explaining why alterations in such diverse cellular processes lead to the selective loss of dopamine (DA) neurons in the substantia nigra (SNc) in the brain of individuals with PD. Recent work has shown that one of the reasons for the high vulnerability of SNc DA neurons is their high basal rate of mitochondrial oxidative phosphorylation (OXPHOS), resulting from their highly complex axonal arborization. Here, we examined whether axonal growth and basal mitochondrial function are altered in SNc DA neurons from Parkin-, Pink1-, or DJ-1-KO mice. We provide evidence for increased basal OXPHOS in Parkin-KO DA neurons and for reduced survival of DA neurons that have a complex axonal arbor. The surviving smaller neurons exhibited reduced vulnerability to the DA neurotoxin and mitochondrial complex I inhibitor MPP+, and this reduction was associated with reduced expression of the DA transporter. Finally, we found that glial cells play a role in the reduced resilience of DA neurons in these mice and that WT Parkin overexpression rescues this phenotype. Our results provide critical insights into the complex relationship between mitochondrial function, axonal growth, and genetic risk factors for PD.


Asunto(s)
Neuronas Dopaminérgicas/patología , Metabolismo Energético , Mitocondrias/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/mortalidad , Proteína Desglicasa DJ-1/fisiología , Proteínas Quinasas/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Células Cultivadas , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Fosforilación Oxidativa , Enfermedad de Parkinson/patología
8.
J Neurochem ; 150(3): 312-329, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30734931

RESUMEN

Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neurotoxinas/farmacología , Enfermedad de Parkinson/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
9.
Hum Mol Genet ; 26(17): 3327-3341, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28595361

RESUMEN

Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/fisiología , Células-Madre Neurales/metabolismo , Animales , Factor Inductor de la Apoptosis/metabolismo , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Cognición , Disfunción Cognitiva/metabolismo , Humanos , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Transducción de Señal
10.
Hum Mol Genet ; 26(7): 1247-1257, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158614

RESUMEN

Progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta is the primary cause for motor symptoms observed in Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most commonly linked contributor to familial PD. LRRK2 is suggested to be involved in a wide variety of cellular processes, but deciphering its role in the pathogenesis of PD has been difficult. Modelling PD in rodents has been a persistent challenge for the field. However, the fruit fly has been exploited to recapitulate PD gene related dopaminergic cell loss. Using the GAL4-UAS system and established models of hLRRK2 induced eye degeneration in Drosophila, we conducted an unbiased suppressor/enhancer screen to uncover genetic modifiers of LRRK2. We have identified 36 candidate interactors that modify LRRK2 induced toxicity in the Drosophila eye. Importantly, we determined that a subset of these interactors also modified hLRRK2(I2020T) induced dopaminergic neuronal loss in the fly brain and uncovered 16 candidates that modify dopaminergic cell loss. Our results suggest LRRK2 may be involved in a wide variety of cellular processes and the results from this screen provide an important genetic resource for further evaluation of LRRK2 function.


Asunto(s)
Dopamina/metabolismo , Proteínas de Drosophila/genética , Oftalmopatías/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Animales , Modelos Animales de Enfermedad , Dopamina/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Drosophila melanogaster/genética , Epistasis Genética , Oftalmopatías/patología , Humanos , Ratones , Ratones Transgénicos , Mutación , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología
11.
Dev Dyn ; 247(1): 47-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28643345

RESUMEN

Mitochondria are classically known to be the cellular energy producers, but a renewed appreciation for these organelles has developed with the accumulating discoveries of additional functions. The importance of mitochondria within the brain has been long known, particularly given the high-energy demanding nature of neurons. The energy demands imposed by neurons require the well-orchestrated morphological adaptation and distribution of mitochondria. Recent studies now reveal the importance of mitochondrial dynamics not only in mature neurons but also during neural development, particularly during the process of neurogenesis and neural stem cell fate decisions. In this review, we will highlight the recent findings that illustrate the importance of mitochondrial dynamics in neurodevelopment and neural stem cell function. Developmental Dynamics 247:47-53, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Neurogénesis/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Metabolismo Energético/fisiología , Células-Madre Neurales/metabolismo
12.
J Neurosci ; 37(28): 6729-6740, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28607169

RESUMEN

Dysregulation of cell cycle machinery is implicated in a number of neuronal death contexts, including stroke. Increasing evidence suggests that cyclin-dependent kinases (Cdks) are inappropriately activated in mature neurons under ischemic stress conditions. We previously demonstrated a functional role for the cyclin D1/Cdk4/pRb (retinoblastoma tumor suppressor protein) pathway in delayed neuronal death induced by ischemia. However, the molecular signals leading to cyclin D/Cdk4/pRb activation following ischemic insult are presently not clear. Here, we investigate the cell division cycle 25 (Cdc25) dual-specificity phosphatases as potential upstream regulators of ischemic neuronal death and Cdk4 activation. We show that a pharmacologic inhibitor of Cdc25 family members (A, B, and C) protects mouse primary neurons from hypoxia-induced delayed death. The major contributor to the death process appears to be Cdc25A. shRNA-mediated knockdown of Cdc25A protects neurons in a delayed model of hypoxia-induced death in vitro Similar results were observed in vivo following global ischemia in the rat. In contrast, neurons singly or doubly deficient for Cdc25B/C were not significantly protective. We show that Cdc25A activity, but not level, is upregulated in vitro following hypoxia and global ischemic insult in vivo Finally, we show that shRNA targeting Cdc25A blocks Ser795 pRb phosphorylation. Overall, our results indicate a role for Cdc25A in delayed neuronal death mediated by ischemia.SIGNIFICANCE STATEMENT A major challenge in stroke is finding an effective neuroprotective strategy to treat cerebral ischemic injury. Cdc25 family member A (Cdc25A) is a phosphatase normally activated during cell division in proliferating cells. We found that Cdc25A is activated in neurons undergoing ischemic stress mediated by hypoxia in vitro and global cerebral ischemia in rats in vivo We show that pharmacologic or genetic inhibition of Cdc25A activity protects neurons from delayed death in vitro and in vivo Downregulation of Cdc25A led to reduction in retinoblastoma tumor suppressor protein (pRb) phosphorylation. An increase in pRb phosphorylation has been previously linked to ischemic neuronal death. Our results identify Cdc25A as a potential target for neuroprotectant strategy for the treatment of delayed ischemic neuronal death.


Asunto(s)
Apoptosis , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Fosfatasas cdc25/metabolismo , Animales , Células Cultivadas , Activación Enzimática , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
13.
EMBO J ; 33(22): 2676-91, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25298396

RESUMEN

Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/enzimología , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Ratones , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Consumo de Oxígeno/fisiología , Multimerización de Proteína/fisiología
14.
Hum Mol Genet ; 24(16): 4573-83, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26002103

RESUMEN

Defects in mitochondrial fission and cyclin dependent kinase 5 (CDK5) activation are early events that precede neuronal loss following NMDA-induced neuronal death. Here, we report that the cytoplasmic CDK5 tightly regulates mitochondrial morphology defects associated with NMDA-induced neuronal injury via regulation of the mitochondrial fission protein, dynamin-related protein 1 (DRP1). We show that DRP1 is a direct target of CDK5. CDK5-mediated phosphorylation of DRP1 at a conserved Serine residue, S585, is elevated at the mitochondria and is associated with increased mitochondrial fission. Ectopic expression of a cytoplasmic CDK5 or mutant DRP1-S585D results in increased mitochondrial fragmentation in primary neurons. Conversely, expression of a dominant negative form of cytoplasmic CDK5 or mutant DRP1-S585A results in elongated mitochondria. In addition, pharmacological inhibition of CDK5 by Roscovitine inhibits DRP1 phosphorylation and mitochondrial fission associated with NMDA-induced neuronal loss. Importantly, conditional deletion of CDK5 significantly attenuates DRP1 phosphorylation at S585 and rescues mitochondrial fission defects in neurons exposed to NMDA. Our studies delineate an important mechanism by which CDK5 regulates mitochondrial morphology defects associated with neuronal injury.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Dinaminas/metabolismo , Mitocondrias/metabolismo , N-Metilaspartato/toxicidad , Neuronas/metabolismo , Sustitución de Aminoácidos , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Quinasa 5 Dependiente de la Ciclina/genética , Dinaminas/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Mutación Missense , Neuronas/patología , Fosforilación
15.
J Biol Chem ; 290(51): 30441-52, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26538564

RESUMEN

Emerging evidence has demonstrated a growing genetic component in Parkinson disease (PD). For instance, loss-of-function mutations in PINK1 or PARKIN can cause autosomal recessive PD. Recently, PINK1 and PARKIN have been implicated in the same signaling pathway to regulate mitochondrial clearance through recruitment of PARKIN by stabilization of PINK1 on the outer membrane of depolarized mitochondria. The precise mechanisms that govern this process remain enigmatic. In this study, we identify Bcl2-associated athanogene 2 (BAG2) as a factor that promotes mitophagy. BAG2 inhibits PINK1 degradation by blocking the ubiquitination pathway. Stabilization of PINK1 by BAG2 triggers PARKIN-mediated mitophagy and protects neurons against 1-methyl-4-phenylpyridinium-induced oxidative stress in an in vitro cell model of PD. Collectively, our findings support the notion that BAG2 is an upstream regulator of the PINK1/PARKIN signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Supervivencia Celular , Ratones , Ratones Mutantes , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Mitofagia/genética , Chaperonas Moleculares/genética , Proteínas Quinasas/genética , Estabilidad Proteica , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
16.
Hippocampus ; 26(11): 1379-1392, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27325572

RESUMEN

In mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown. Here, we show that loss of RB during embryogenesis induces massive ectopic proliferation and delayed cell cycle exit of young DGCs specifically at late developmental stages but without affecting stem cells. This phenotype was partially counterbalanced by increased cell death. Similarly, during adulthood, loss of RB causes ectopic proliferation of newborn DGCs and dramatically impairs their survival. These results demonstrate a crucial role for RB in the generation and the survival of DGCs in the embryonic and the adult brain. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Giro Dentado/citología , Giro Dentado/embriología , Neurogénesis/genética , Neuronas/fisiología , Proteína de Retinoblastoma/metabolismo , Células Madre/fisiología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Factor de Transcripción E2F1/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Embrión de Mamíferos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Antígeno Ki-67/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Proteína de Retinoblastoma/genética , Factores de Transcripción SOXB1/metabolismo
17.
J Neurosci ; 34(23): 8043-50, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899725

RESUMEN

DJ-1 (PARK7) is a gene linked to autosomal recessive Parkinson disease (PD). We showed previously that DJ-1 loss sensitizes neurons in models of PD and stroke. However, the biochemical mechanisms underlying this protective role are not completely clear. Here, we identify Von Hippel Lindau (VHL) protein as a critical DJ-1-interacting protein. We provide evidence that DJ-1 negatively regulates VHL ubiquitination activity of the α-subunit of hypoxia-inducible factor-1 (HIF-1α) by inhibiting HIF-VHL interaction. Consistent with this observation, DJ-1 deficiency leads to lowered HIF-1α levels in models of both hypoxia and oxidative stress, two stresses known to stabilize HIF-1α. We also demonstrate that HIF-1α accumulation rescues DJ-1-deficient neurons against 1-methyl-4-phenylpyridinium-induced toxicity. Interestingly, lymphoblast cells extracted from DJ-1-related PD patients show impaired HIF-1α stabilization when compared with normal individuals, indicating that the DJ-1-VHL link may also be relevant to a human context. Together, our findings delineate a model by which DJ-1 mediates neuronal survival by regulation of the VHL-HIF-1α pathway.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/metabolismo , Proteínas Oncogénicas/metabolismo , Transducción de Señal/fisiología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Noqueados , Neuroblastoma/patología , Neuronas/efectos de los fármacos , Neurotoxinas/farmacología , Proteínas Oncogénicas/deficiencia , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Enfermedad de Parkinson/patología , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
18.
Diabetologia ; 58(12): 2861-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26404066

RESUMEN

AIMS/HYPOTHESIS: Skeletal muscle mitochondrial dysfunction has been documented in patients with type 2 diabetes mellitus; however, specific respiratory defects and their mechanisms are poorly understood. The aim of the current study was to examine oxidative phosphorylation and electron transport chain (ETC) supercomplex assembly in rectus abdominis muscles of 10 obese diabetic and 10 obese non-diabetic individuals. METHODS: Twenty obese women undergoing Roux-en-Y gastric bypass surgery were recruited for this study. Muscle samples were obtained intraoperatively and subdivided for multiple analyses, including high-resolution respirometry and assessment of supercomplex assembly. Clinical data obtained from referring physicians were correlated with laboratory findings. RESULTS: Participants in both groups were of a similar age, weight and BMI. Mitochondrial respiration rates were markedly reduced in diabetic vs non-diabetic patients. This defect was observed during maximal ADP-stimulated respiration in the presence of complex I-linked substrates and complex I- and II-linked substrates, and during maximal uncoupled respiration. There were no differences in fatty acid (octanoyl carnitine) supported respiration, leak respiration or isolated activity of cytochrome c oxidase. Intriguingly, significant correlations were found between glycated haemoglobin (HbA1c) levels and maximal respiration or respiration supported by complex I, complex I and II or fatty acid. In the muscle of diabetic patients, blue native gel electrophoresis revealed a striking decrease in complex I, III and IV containing ETC supercomplexes. CONCLUSIONS/INTERPRETATION: These findings support the hypothesis that ETC supercomplex assembly may be an important underlying mechanism of muscle mitochondrial dysfunction in type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Fosforilación Oxidativa , Recto del Abdomen/metabolismo , Adenosina Difosfato/farmacología , Adulto , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Complejo IV de Transporte de Electrones/metabolismo , Ácidos Grasos/metabolismo , Femenino , Hemoglobina Glucada/análisis , Humanos , Músculo Esquelético/metabolismo
19.
J Biol Chem ; 289(26): 18202-13, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24828495

RESUMEN

Inappropriate activation of cell cycle proteins, in particular cyclin D/Cdk4, is implicated in neuronal death induced by various pathologic stresses, including DNA damage and ischemia. Key targets of Cdk4 in proliferating cells include members of the E2F transcription factors, which mediate the expression of cell cycle proteins as well as death-inducing genes. However, the presence of multiple E2F family members complicates our understanding of their role in death. We focused on whether E2F4, an E2F member believed to exhibit crucial control over the maintenance of a differentiated state of neurons, may be critical in ischemic neuronal death. We observed that, in contrast to E2F1 and E2F3, which sensitize to death, E2F4 plays a crucial protective role in neuronal death evoked by DNA damage, hypoxia, and global ischemic insult both in vitro and in vivo. E2F4 occupies promoter regions of proapoptotic factors, such as B-Myb, under basal conditions. Following stress exposure, E2F4-p130 complexes are lost rapidly along with the presence of E2F4 at E2F-containing B-Myb promoter sites. In contrast, the presence of E2F1 at B-Myb sites increases with stress. Furthermore, B-Myb and C-Myb expression increases with ischemic insult. Taken together, we propose a model by which E2F4 plays a protective role in neurons from ischemic insult by forming repressive complexes that prevent prodeath factors such as Myb from being expressed.


Asunto(s)
Factor de Transcripción E2F4/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Neuronas/citología , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Factor de Transcripción E2F4/genética , Humanos , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/fisiopatología , Masculino , Ratones Noqueados , Neuronas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Ratas Wistar , Proteína p130 Similar a la del Retinoblastoma/genética , Transactivadores/genética , Transactivadores/metabolismo
20.
Hum Mol Genet ; 22(5): 952-62, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23187960

RESUMEN

Mitochondrial dysfunction plays an important role in the etiology of neurodegenerative diseases. However, the progressive nature of neuronal loss in genetic models of mitochondrial dysfunction suggests the presence of compensatory mechanisms promoting neuronal survival under these conditions. Here, we identified the energy metabolism kinase LKB1 as a key regulator of the compensatory mechanisms activated in neurons, following mitochondrial dysfunction. To accomplish this, we have created an in vivo neurodegenerative model based on the deletion of the mitochondrial protein apoptosis-inducing factor (AIF) in postmitotic neurons. Loss of mitochondrial function caused by AIF deletion induced several adaptive mechanisms, including increased glycolysis and mitochondrial biogenesis. Importantly, the activation of these adaptive mechanisms was abrogated by the deletion of one allele of LKB1, resulting in impaired neuronal survival. Because loss of mitochondrial function is a central mechanism implicated in neurodegenerative diseases, modulation of LKB1-dependent pathways may represent an important strategy to preserve neuronal survival and function.


Asunto(s)
Mitocondrias/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/genética , Proteínas Serina-Treonina Quinasas , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Supervivencia Celular , Metabolismo Energético/genética , Humanos , Ratones , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA