RESUMEN
Senescence is a fate-determined state, accompanied by reorganization of heterochromatin. Although lineage-appropriate genes can be temporarily repressed through facultative heterochromatin, stable silencing of lineage-inappropriate genes often involves the constitutive heterochromatic mark, histone H3 lysine 9 trimethylation (H3K9me3). The fate of these heterochromatic genes during senescence is unclear. In the present study, we show that a small number of lineage-inappropriate genes, exemplified by the LCE2 skin genes, are derepressed during senescence from H3K9me3 regions in fibroblasts. DNA FISH experiments reveal that these gene loci, which are condensed at the nuclear periphery in proliferative cells, are decompacted during senescence. Decompaction of the locus is not sufficient for LCE2 expression, which requires p53 and C/EBPß signaling. NLRP3, which is predominantly expressed in macrophages from an open topologically associated domain (TAD), is also derepressed in senescent fibroblasts due to the local disruption of the H3K9me3-rich TAD that contains it. NLRP3 has been implicated in the amplification of inflammatory cytokine signaling in senescence and aging, highlighting the functional relevance of gene induction from 'permissive' H3K9me3 regions in senescent cells.
Asunto(s)
Heterocromatina , Histonas , Heterocromatina/genética , Histonas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Senescencia Celular/genética , Expresión GénicaRESUMEN
Senescence is a state of stable proliferative arrest, generally accompanied by the senescence-associated secretory phenotype, which modulates tissue homeostasis. Enhancer-promoter interactions, facilitated by chromatin loops, play a key role in gene regulation but their relevance in senescence remains elusive. Here, we use Hi-C to show that oncogenic RAS-induced senescence in human diploid fibroblasts is accompanied by extensive enhancer-promoter rewiring, which is closely connected with dynamic cohesin binding to the genome. We find de novo cohesin peaks often at the 3' end of a subset of active genes. RAS-induced de novo cohesin peaks are transcription-dependent and enriched for senescence-associated genes, exemplified by IL1B, where de novo cohesin binding is involved in new loop formation. Similar IL1B induction with de novo cohesin appearance and new loop formation are observed in terminally differentiated macrophages, but not TNFα-treated cells. These results suggest that RAS-induced senescence represents a cell fate determination-like process characterised by a unique gene expression profile and 3D genome folding signature, mediated in part through cohesin redistribution on chromatin.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Transcripción Genética , Factor de Unión a CCCTC/metabolismo , Diferenciación Celular/genética , Línea Celular , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Sitios Genéticos , Genoma , Humanos , Interleucina-1/genética , Macrófagos/citología , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Proteínas ras/metabolismo , CohesinasRESUMEN
BACKGROUND: Exhaustive methods of sequence alignment are accurate but slow, whereas heuristic approaches run quickly, but their complexity makes them more difficult to implement. We introduce bounded sparse dynamic programming (BSDP) to allow rapid approximation to exhaustive alignment. This is used within a framework whereby the alignment algorithms are described in terms of their underlying model, to allow automated development of efficient heuristic implementations which may be applied to a general set of sequence comparison problems. RESULTS: The speed and accuracy of this approach compares favourably with existing methods. Examples of its use in the context of genome annotation are given. CONCLUSIONS: This system allows rapid implementation of heuristics approximating to many complex alignment models, and has been incorporated into the freely available sequence alignment program, exonerate.