RESUMEN
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación V(D)J , Animales , Inestabilidad Genómica , Humanos , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Antígenos/genéticaRESUMEN
Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single-strand DNA (ssDNA) in BRCA1-deficient cells, leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against DNA2/EXO1 exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the CTC1-STN1-TEN1 (CST) and DNA polymerase α (Polα) to counteract resection. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at restriction enzyme-induced DSBs. We show that, in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths in G0/G1, supporting a previous model that fill-in synthesis can limit the extent of resection. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, EXO1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, Polα-mediated fill-in partially limits resection in the presence of 53BP1 but cannot counter extensive hyperresection due to the loss of 53BP1 exonuclease blockade. These data provide the first nucleotide mapping of DNA synthesis at resected DSBs and provide insight into the relationship between fill-in polymerases and resection exonucleases.
Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , Reparación del ADN/genética , Replicación del ADN/genética , ADN de Cadena Simple/genética , Recombinación Homóloga/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismoRESUMEN
The DNA damage response (DDR) protein 53BP1 protects DNA ends from excessive resection in G1, and thereby favors repair by nonhomologous end-joining (NHEJ) as opposed to homologous recombination (HR). During S phase, BRCA1 antagonizes 53BP1 to promote HR. The pro-NHEJ and antirecombinase functions of 53BP1 are mediated in part by RIF1, the only known factor that requires 53BP1 phosphorylation for its recruitment to double-strand breaks (DSBs). Here, we show that a 53BP1 phosphomutant, 53BP18A, comprising alanine substitutions of the eight most N-terminal S/TQ phosphorylation sites, mimics 53BP1 deficiency by restoring genome stability in BRCA1-deficient cells yet behaves like wild-type 53BP1 with respect to immunoglobulin class switch recombination (CSR). 53BP18A recruits RIF1 but fails to recruit the DDR protein PTIP to DSBs, and disruption of PTIP phenocopies 53BP18A. We conclude that 53BP1 promotes productive CSR and suppresses mutagenic DNA repair through distinct phosphodependent interactions with RIF1 and PTIP.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Cambio de Clase de Inmunoglobulina , Proteínas Nucleares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , Linfocitos B/metabolismo , Proteína BRCA1/metabolismo , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Inestabilidad Genómica , Ratones , Mutación , Proteína 1 de Unión al Supresor Tumoral P53RESUMEN
The modulator of retrovirus infection (MRI or CYREN) is a 30-kDa protein with a conserved N-terminal Ku-binding motif (KBM) and a C-terminal XLF-like motif (XLM). We show that MRI is intrinsically disordered and interacts with many DNA damage response (DDR) proteins, including the kinases ataxia telangiectasia mutated (ATM) and DNA-PKcs and the classical non-homologous end joining (cNHEJ) factors Ku70, Ku80, XRCC4, XLF, PAXX, and XRCC4. MRI forms large multimeric complexes that depend on its N and C termini and localizes to DNA double-strand breaks (DSBs), where it promotes the retention of DDR factors. Mice deficient in MRI and XLF exhibit embryonic lethality at a stage similar to those deficient in the core cNHEJ factors XRCC4 or DNA ligase IV. Moreover, MRI is required for cNHEJ-mediated DSB repair in XLF-deficient lymphocytes. We propose that MRI is an adaptor that, through multivalent interactions, increases the avidity of DDR factors to DSB-associated chromatin to promote cNHEJ.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Animales , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN Ligasa (ATP)/genética , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Autoantígeno Ku/genética , RatonesRESUMEN
Germinal centers (GCs) are sites of intense B cell proliferation and are central for T cell-dependent antibody responses. However, the role of c-Myc, a key cell-cycle regulator, in this process has been questioned. Here we identified c-Myc(+) B cell subpopulations in immature and mature GCs and found, by genetic ablation of Myc, that they had indispensable roles in the formation and maintenance of GCs. The identification of these functionally critical cellular subsets has implications for human B cell lymphomagenesis, which originates mostly from GC B cells and frequently involves MYC chromosomal translocations. As these translocations are generally dependent on transcription of the recombining partner loci, the c-Myc(+) GC subpopulations may be at a particularly high risk for malignant transformation.
Asunto(s)
Subgrupos de Linfocitos B/inmunología , Linfocitos B/metabolismo , Ciclo Celular/genética , Centro Germinal/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Ciclo Celular/inmunología , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Eliminación de Gen , Regulación de la Expresión Génica/inmunología , Genes Reporteros , Sitios Genéticos , Centro Germinal/inmunología , Centro Germinal/patología , Proteínas Fluorescentes Verdes , Linfoma/genética , Linfoma/metabolismo , Linfoma/patología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología , Translocación GenéticaRESUMEN
DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice.
Asunto(s)
Cromatina/química , Roturas del ADN de Doble Cadena , ADN/genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Cromatina/inmunología , ADN/inmunología , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Regulación de la Expresión Génica , Histonas/genética , Histonas/inmunología , Cambio de Clase de Inmunoglobulina/genética , Ratones , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Recombinación Genética , Timocitos/citología , Timocitos/inmunologíaRESUMEN
Chromosomal translocations that juxtapose antigen receptor genes and oncogenes are frequently associated with lymphoid malignancies. In this issue, Robbiani et al. (2008) show that activation-induced deaminase (AID), an enzyme involved in antigen receptor gene diversification, generates DNA double-strand breaks (DSBs) in oncogenes, and Tsai et al. (2008) propose that AID and the recombinase-activating gene (RAG) endonuclease may collaborate to generate off-target DSBs.
Asunto(s)
Citidina Desaminasa/metabolismo , Roturas del ADN de Doble Cadena , Receptores de Antígenos/genética , Animales , Reparación del ADN , Proteínas de Homeodominio/metabolismo , Humanos , Linfoma/genética , Linfoma/metabolismo , Receptores de Antígenos/metabolismo , Translocación GenéticaRESUMEN
Hematopoietic stem cell (HSC) differentiation is regulated by cell-intrinsic and cell-extrinsic cues. In addition to transcriptional regulation, post-translational regulation may also control HSC differentiation. To test this hypothesis, we visualized the ubiquitin-regulated protein stability of a single transcription factor, c-Myc. The stability of c-Myc protein was indicative of HSC quiescence, and c-Myc protein abundance was controlled by the ubiquitin ligase Fbw7. Fine changes in the stability of c-Myc protein regulated the HSC gene-expression signature. Using whole-genome genomic approaches, we identified specific regulators of HSC function directly controlled by c-Myc binding; however, adult HSCs and embryonic stem cells sensed and interpreted c-Myc-regulated gene expression in distinct ways. Our studies show that a ubiquitin ligase-substrate pair can orchestrate the molecular program of HSC differentiation.
Asunto(s)
Diferenciación Celular/fisiología , Células Madre Hematopoyéticas/citología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Ciclo Celular/genética , Ciclo Celular/inmunología , Proteínas de Ciclo Celular/inmunología , Diferenciación Celular/genética , Inmunoprecipitación de Cromatina , Citometría de Flujo , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/inmunologíaRESUMEN
The carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) is known to function in 5' strand resection during homologous recombination, similar to the budding yeast Sae2 protein, but its role in this process is unclear. Here, we characterize recombinant human CtIP and find that it exhibits 5' flap endonuclease activity on branched DNA structures, independent of the MRN complex. Phosphorylation of CtIP at known damage-dependent sites and other sites is essential for its catalytic activity, although the S327 and T847 phosphorylation sites are dispensable. A catalytic mutant of CtIP that is deficient in endonuclease activity exhibits wild-type levels of homologous recombination at restriction enzyme-generated breaks but is deficient in processing topoisomerase adducts and radiation-induced breaks in human cells, suggesting that the nuclease activity of CtIP is specifically required for the removal of DNA adducts at sites of DNA breaks.
Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Endonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Reparación del ADN por Recombinación/genética , Sitios de Unión/genética , Proteínas Portadoras/genética , Catálisis , Línea Celular , Supervivencia Celular/genética , ADN/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas , Endonucleasas/genética , Humanos , Proteínas Nucleares/genética , Fosforilación/genética , Procesamiento Proteico-Postraduccional/genética , Radiación Ionizante , Recombinación GenéticaRESUMEN
The structure of broken DNA ends is a critical determinant of the pathway used for DNA double-strand break (DSB) repair. Here, we develop an approach involving the hairpin capture of DNA end structures (HCoDES), which elucidates chromosomal DNA end structures at single-nucleotide resolution. HCoDES defines structures of physiologic DSBs generated by the RAG endonuclease, as well as those generated by nucleases widely used for genome editing. Analysis of G1 phase cells deficient in H2AX or 53BP1 reveals DNA ends that are frequently resected to form long single-stranded overhangs that can be repaired by mutagenic pathways. In addition to 3' overhangs, many of these DNA ends unexpectedly form long 5' single-stranded overhangs. The divergence in DNA end structures resolved by HCoDES suggests that H2AX and 53BP1 may have distinct activities in end protection. Thus, the high-resolution end structures obtained by HCoDES identify features of DNA end processing during DSB repair.
Asunto(s)
Cromosomas Humanos/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Células Cultivadas , Roturas del ADN de Doble Cadena , HumanosRESUMEN
Coordinated recombination of homologous antigen receptor loci is thought to be important for allelic exclusion. Here we show that homologous immunoglobulin alleles pair in a stage-specific way that mirrors the recombination patterns of these loci. The frequency of homologous immunoglobulin pairing was much lower in the absence of the RAG-1-RAG-2 recombinase and was restored in Rag1-/- developing B cells with a transgene expressing a RAG-1 active-site mutant that supported DNA binding but not cleavage. The introduction of DNA breaks on one immunoglobulin allele induced ATM-dependent repositioning of the other allele to pericentromeric heterochromatin. ATM activated by the cleaved allele acts in trans on the uncleaved allele to prevent biallelic recombination and chromosome breaks or translocations.
Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Inmunoglobulinas/genética , Proteínas Serina-Treonina Quinasas/genética , Recombinación Genética , Proteínas Supresoras de Tumor/genética , Alelos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Linfocitos B/metabolismo , Células Cultivadas , Roturas del ADN , Reordenamiento Génico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , VDJ Recombinasas/metabolismoRESUMEN
The transcription factors c-Myc and N-Myc--encoded by Myc and Mycn, respectively--regulate cellular growth and are required for embryonic development. A third paralogue, Mycl1, is dispensable for normal embryonic development but its biological function has remained unclear. To examine the in vivo function of Mycl1 in mice, we generated an inactivating Mycl1(gfp) allele that also reports Mycl1 expression. We find that Mycl1 is selectively expressed in dendritic cells (DCs) of the immune system and controlled by IRF8, and that during DC development, Mycl1 expression is initiated in the common DC progenitor concurrent with reduction in c-Myc expression. Mature DCs lack expression of c-Myc and N-Myc but maintain L-Myc expression even in the presence of inflammatory signals such as granulocyte-macrophage colony-stimulating factor. All DC subsets develop in Mycl1-deficient mice, but some subsets such as migratory CD103(+) conventional DCs in the lung and liver are greatly reduced at steady state. Importantly, loss of L-Myc by DCs causes a significant decrease in in vivo T-cell priming during infection by Listeria monocytogenes and vesicular stomatitis virus. The replacement of c-Myc by L-Myc in immature DCs may provide for Myc transcriptional activity in the setting of inflammation that is required for optimal T-cell priming.
Asunto(s)
Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfocitos T/inmunología , Animales , Antígenos CD/metabolismo , División Celular , Células Dendríticas/citología , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Cadenas alfa de Integrinas/metabolismo , Factores Reguladores del Interferón/metabolismo , Listeria monocytogenes/inmunología , Hígado/citología , Hígado/inmunología , Pulmón/citología , Pulmón/inmunología , Masculino , Ratones , Proteínas Proto-Oncogénicas c-myc/deficiencia , Transcripción Genética , Vesiculovirus/inmunologíaRESUMEN
Primary immunodeficiency diseases comprise a group of heterogeneous genetic defects that affect immune system development and/or function. Here we use in vitro differentiation of human induced pluripotent stem cells (iPSCs) generated from patients with different recombination-activating gene 1 (RAG1) mutations to assess T-cell development and T-cell receptor (TCR) V(D)J recombination. RAG1-mutants from severe combined immunodeficient (SCID) patient cells showed a failure to sustain progression beyond the CD3(--)CD4(-)CD8(-)CD7(+)CD5(+)CD38(-)CD31(-/lo)CD45RA(+) stage of T-cell development to reach the CD3(-/+)CD4(+)CD8(+)CD7(+)CD5(+)CD38(+)CD31(+)CD45RA(-) stage. Despite residual mutant RAG1 recombination activity from an Omenn syndrome (OS) patient, similar impaired T-cell differentiation was observed, due to increased single-strand DNA breaks that likely occur due to heterodimers consisting of both an N-terminal truncated and a catalytically dead RAG1. Furthermore, deep-sequencing analysis of TCR-ß (TRB) and TCR-α (TRA) rearrangements of CD3(-)CD4(+)CD8(-) immature single-positive and CD3(+)CD4(+)CD8(+) double-positive cells showed severe restriction of repertoire diversity with preferential usage of few Variable, Diversity, and Joining genes, and skewed length distribution of the TRB and TRA complementary determining region 3 sequences from SCID and OS iPSC-derived cells, whereas control iPSCs yielded T-cell progenitors with a broadly diversified repertoire. Finally, no TRA/δ excision circles (TRECs), a marker of TRA/δ locus rearrangements, were detected in SCID and OS-derived T-lineage cells, consistent with a pre-TCR block in T-cell development. This study compares human T-cell development of SCID vs OS patients, and elucidates important differences that help to explain the wide range of immunologic phenotypes that result from different mutations within the same gene of various patients.
Asunto(s)
Proteínas de Homeodominio/genética , Células Madre Pluripotentes Inducidas/patología , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/patología , Linfocitos T/patología , Células Cultivadas , Roturas del ADN , Genes RAG-1 , Humanos , Lactante , Mutación , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Recombinación V(D)JRESUMEN
DNA double-strand breaks (DSBs) are generated by the recombination activating gene (RAG) endonuclease in all developing lymphocytes as they assemble antigen receptor genes. DNA cleavage by RAG occurs only at the G1 phase of the cell cycle and generates two hairpin-sealed DNA (coding) ends that require nucleolytic opening before their repair by classical non-homologous end-joining (NHEJ). Although there are several cellular nucleases that could perform this function, only the Artemis nuclease is able to do so efficiently. Here, in vivo, we show that in murine cells the histone protein H2AX prevents nucleases other than Artemis from processing hairpin-sealed coding ends; in the absence of H2AX, CtIP can efficiently promote the hairpin opening and resection of DNA ends generated by RAG cleavage. This CtIP-mediated resection is inhibited by γ-H2AX and by MDC-1 (mediator of DNA damage checkpoint 1), which binds to γ-H2AX in chromatin flanking DNA DSBs. Moreover, the ataxia telangiectasia mutated (ATM) kinase activates antagonistic pathways that modulate this resection. CtIP DNA end resection activity is normally limited to cells at post-replicative stages of the cell cycle, in which it is essential for homology-mediated repair. In G1-phase lymphocytes, DNA ends that are processed by CtIP are not efficiently joined by classical NHEJ and the joints that do form frequently use micro-homologies and show significant chromosomal deletions. Thus, H2AX preserves the structural integrity of broken DNA ends in G1-phase lymphocytes, thereby preventing these DNA ends from accessing repair pathways that promote genomic instability.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Fase G1 , Reordenamiento Génico de Linfocito B , Histonas/metabolismo , Linfocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular Transformada , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Reordenamiento Génico de Linfocito B/genética , Inestabilidad Genómica , Histonas/deficiencia , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfocitos/citología , Ratones , Proteínas Nucleares , Células Precursoras de Linfocitos B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética/genética , Especificidad por Sustrato , Proteínas Supresoras de Tumor/metabolismoRESUMEN
A hallmark of the cellular response to DNA double-strand breaks (DSBs) is histone H2AX phosphorylation in chromatin to generate gamma-H2AX. Here, we demonstrate that gamma-H2AX densities increase transiently along DNA strands as they are broken and repaired in G1 phase cells. The region across which gamma-H2AX forms does not spread as DSBs persist; rather, gamma-H2AX densities equilibrate at distinct levels within a fixed distance from DNA ends. Although both ATM and DNA-PKcs generate gamma-H2AX, only ATM promotes gamma-H2AX formation to maximal distance and maintains gamma-H2AX densities. MDC1 is essential for gamma-H2AX formation at high densities near DSBs, but not for generation of gamma-H2AX over distal sequences. Reduced H2AX levels in chromatin impair the density, but not the distance, of gamma-H2AX formed. Our data suggest that H2AX fuels a gamma-H2AX self-reinforcing mechanism that retains MDC1 and activated ATM in chromatin near DSBs and promotes continued local phosphorylation of H2AX.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Linfocitos B/citología , Linfocitos B/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Endonucleasas , Fase G1/fisiología , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T/genética , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Recombinación Genética , Timo/citología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genéticaRESUMEN
Deregulated activation of ß-catenin in cancer has been correlated with genomic instability. During thymocyte development, ß-catenin activates transcription in partnership with T-cell-specific transcription factor 1 (Tcf-1). We previously reported that targeted activation of ß-catenin in thymocytes (CAT mice) induces lymphomas that depend on recombination activating gene (RAG) and myelocytomatosis oncogene (Myc) activities. Here we show that these lymphomas have recurring Tcra/Myc translocations that resulted from illegitimate RAG recombination events and resembled oncogenic translocations previously described in human T-ALL. We therefore used the CAT animal model to obtain mechanistic insights into the transformation process. ChIP-seq analysis uncovered a link between Tcf-1 and RAG2 showing that the two proteins shared binding sites marked by trimethylated histone-3 lysine-4 (H3K4me3) throughout the genome, including near the translocation sites. Pretransformed CAT thymocytes had increased DNA damage at the translocating loci and showed altered repair of RAG-induced DNA double strand breaks. These cells were able to survive despite DNA damage because activated ß-catenin promoted an antiapoptosis gene expression profile. Thus, activated ß-catenin promotes genomic instability that leads to T-cell lymphomas as a consequence of altered double strand break repair and increased survival of thymocytes with damaged DNA.
Asunto(s)
Inestabilidad Genómica , Activación de Linfocitos , Linfoma/genética , Linfocitos T/citología , beta Catenina/metabolismo , Animales , Apoptosis , Secuencia de Bases , Supervivencia Celular , Roturas del ADN de Doble Cadena , Metilación de ADN , Reparación del ADN , Modelos Animales de Enfermedad , Genes RAG-1/genética , Factor Nuclear 1-alfa del Hepatocito , Histonas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Recombinación Genética , Factor 1 de Transcripción de Linfocitos T/metabolismo , Timocitos/citología , Translocación Genética , beta Catenina/genéticaRESUMEN
Previous studies have established pivotal roles for c-Myc and its homolog N-Myc in hematopoietic stem cell (HSC) maintenance and niche-dependent differentiation. However, it remains largely unclear how c-Myc expression is regulated in this context. Here, we show that HSCs and more committed progenitors express similar levels of c-myc transcripts. Using knock-in mice expressing a functional enhanced green fluorescent protein-c-Myc fusion protein under control of the endogenous c-myc locus, c-Myc protein levels were assessed. Although HSCs express low levels of c-Myc protein, its expression increases steadily during progenitor differentiation. Thus, mRNA and protein expression patterns differ significantly in stem/progenitor cells, suggesting that c-Myc expression is largely controlled posttranscriptionally. Moreover, interferon-α exposure, which activates dormant HSCs, strongly induces c-Myc expression at the protein level but not at the transcript level. This posttranscriptional mechanism of c-Myc regulation provides the blood system with a rapid way to adjust c-Myc expression according to demand during hematopoietic stress.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Interferón-alfa/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Procesamiento Postranscripcional del ARN , Animales , Diferenciación Celular/genética , Células Cultivadas , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/metabolismo , Homeostasis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/genéticaRESUMEN
The ability to sense metabolic stress is critical for successful cellular adaptation. In eukaryotes, the AMP-activated protein kinase (AMPK), a highly conserved serine/threonine kinase, functions as a critical metabolic sensor. AMPK is activated by the rising ADP/ATP and AMP/ATP ratios during conditions of energy depletion and also by increasing intracellular Ca(2+). In response to metabolic stress, AMPK maintains energy homeostasis by phosphorylating and regulating proteins that are involved in many physiological processes including glucose and fatty acid metabolism, transcription, cell growth, mitochondrial biogenesis, and autophagy. Evidence is mounting that AMPK also plays a role in a number of pathways unrelated to energy metabolism. Here, we identify the recombination-activating gene 1 protein (RAG1) as a substrate of AMPK. The RAG1/RAG2 complex is a lymphoid-specific endonuclease that catalyzes specific DNA cleavage during V(D)J recombination, which is required for the assembly of the Ig and T-cell receptor genes of the immune system. AMPK directly phosphorylates RAG1 at serine 528, and the phosphorylation enhances the catalytic activity of the RAG complex, resulting in increased cleavage of oligonucleotide substrates in vitro, or increased recombination of an extrachromosomal substrate in a cellular assay. Our results suggest that V(D)J recombination can be regulated by AMPK activation, providing a potential new link between metabolic stress and development of B and T lymphocytes.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Homeodominio/metabolismo , Serina/metabolismo , Recombinación V(D)J , Secuencia de Aminoácidos , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Immunoblotting , Ratones , Ratones Noqueados , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Fosforilación , Homología de Secuencia de Aminoácido , Serina/genética , Especificidad por SustratoRESUMEN
BACKGROUND: The endonuclease ARTEMIS, which is encoded by the DCLRE1C gene, is a component of the nonhomologous end-joining pathway and participates in hairpin opening during the V(D)J recombination process and repair of a subset of DNA double-strand breaks. Patients with ARTEMIS deficiency usually present with severe combined immunodeficiency (SCID) and cellular radiosensitivity, but hypomorphic mutations can cause milder phenotypes (leaky SCID). OBJECTIVE: We sought to correlate the functional effect of human DCLRE1C mutations on phenotypic presentation in patients with ARTEMIS deficiency. METHODS: We studied the recombination and DNA repair activity of 41 human DCLRE1C mutations in Dclre1c(-/-) v-abl kinase-transformed pro-B cells retrovirally engineered with a construct that allows quantification of recombination activity by means of flow cytometry. For assessment of DNA repair efficacy, resolution of γH2AX accumulation was studied after ionizing radiation. RESULTS: Low or absent activity was detected for mutations causing a typical SCID phenotype. Most of the patients with leaky SCID were compound heterozygous for 1 loss-of-function and 1 hypomorphic allele, with significant residual levels of recombination and DNA repair activity. Deletions disrupting the C-terminus result in truncated but partially functional proteins and are often associated with leaky SCID. Overexpression of hypomorphic mutants might improve the functional defect. CONCLUSIONS: Correlation between the nature and location of DCLRE1C mutations, functional activity, and the clinical phenotype has been observed. Hypomorphic variants that have been reported in the general population can be disease causing if combined in trans with a loss-of-function allele. Therapeutic strategies aimed at inducing overexpression of hypomorphic alleles might be beneficial.
Asunto(s)
Linfocitos B/fisiología , Mutación/genética , Proteínas Nucleares/genética , Inmunodeficiencia Combinada Grave/genética , Adolescente , Adulto , Alelos , Linfocitos B/efectos de la radiación , Línea Celular Transformada , Niño , Preescolar , Análisis Mutacional de ADN , Reparación del ADN/genética , Proteínas de Unión al ADN , Endonucleasas , Heterocigoto , Histonas/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Proteínas Oncogénicas v-abl/genética , Proteínas Oncogénicas v-abl/metabolismo , Fenotipo , Tolerancia a Radiación/genética , Radiación Ionizante , Recombinación V(D)J/genética , Adulto JovenRESUMEN
During early stages of B-lineage differentiation in bone marrow, signals emanating from IL-7R and pre-BCR are thought to synergistically induce proliferative expansion of progenitor cells. Paradoxically, loss of pre-BCR-signaling components is associated with leukemia in both mice and humans. Exactly how progenitor B cells perform the task of balancing proliferative burst dependent on IL-7 with the termination of IL-7 signals and the initiation of L chain gene rearrangement remains to be elucidated. In this article, we provide genetic and functional evidence that the cessation of the IL-7 response of pre-B cells is controlled via a cell-autonomous mechanism that operates at a discrete developmental transition inside Fraction C' (large pre-BII) marked by transient expression of c-Myc. Our data indicate that pre-BCR cooperates with IL-7R in expanding the pre-B cell pool, but it is also critical to control the differentiation program shutting off the c-Myc gene in large pre-B cells.