Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Traffic ; 25(1): e12922, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926971

RESUMEN

The parasite Plasmodium falciparum causes the most severe form of malaria and to invade and replicate in red blood cells (RBCs), it exports hundreds of proteins across the encasing parasitophorous vacuole membrane (PVM) into this host cell. The exported proteins help modify the RBC to support rapid parasite growth and avoidance of the human immune system. Most exported proteins possess a conserved Plasmodium export element (PEXEL) motif with the consensus RxLxE/D/Q amino acid sequence, which acts as a proteolytic cleavage recognition site within the parasite's endoplasmic reticulum (ER). Cleavage occurs after the P1 L residue and is thought to help release the protein from the ER so it can be putatively escorted by the HSP101 chaperone to the parasitophorous vacuole space surrounding the intraerythrocytic parasite. HSP101 and its cargo are then thought to assemble with the rest of a Plasmodium translocon for exported proteins (PTEX) complex, that then recognises the xE/D/Q capped N-terminus of the exported protein and translocates it across the vacuole membrane into the RBC compartment. Here, we present evidence that supports a dual role for the PEXEL's conserved P2 ' position E/Q/D residue, first, for plasmepsin V cleavage in the ER, and second, for efficient PTEX mediated export across the PVM into the RBC. We also present evidence that the downstream 'spacer' region separating the PEXEL motif from the folded functional region of the exported protein controls cargo interaction with PTEX as well. The spacer must be of a sufficient length and permissive amino acid composition to engage the HSP101 unfoldase component of PTEX to be efficiently translocated into the RBC compartment.


Asunto(s)
Parásitos , Plasmodium , Animales , Humanos , Plasmodium falciparum/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Plasmodium/metabolismo , Eritrocitos/parasitología , Parásitos/metabolismo
2.
PLoS Biol ; 21(4): e3002066, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37053271

RESUMEN

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum/metabolismo , Actinas/genética , Actinas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Malaria Falciparum/genética , Eritrocitos/parasitología , Antimaláricos/farmacología
3.
Mol Cell ; 68(4): 659-672.e9, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149594

RESUMEN

Certain BH3-only proteins transiently bind and activate Bak and Bax, initiating their oligomerization and the permeabilization of the mitochondrial outer membrane, a pivotal step in the mitochondrial pathway to apoptosis. Here we describe the first crystal structures of an activator BH3 peptide bound to Bak and illustrate their use in the design of BH3 derivatives capable of inhibiting human Bak on mitochondria. These BH3 derivatives compete for the activation site at the canonical groove, are the first engineered inhibitors of Bak activation, and support the role of key conformational transitions associated with Bak activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2 , Mitocondrias , Péptidos , Proteína Destructora del Antagonista Homólogo bcl-2 , Animales , Proteína 11 Similar a Bcl2/química , Proteína 11 Similar a Bcl2/farmacología , Línea Celular Transformada , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Péptidos/química , Péptidos/farmacología , Unión Proteica , Relación Estructura-Actividad , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
4.
Traffic ; 23(9): 442-461, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36040075

RESUMEN

Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs-modifications which are both mediated by parasite-derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Antimaláricos/metabolismo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Eritrocitos/parasitología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Parásitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
5.
PLoS Pathog ; 18(2): e1009977, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192672

RESUMEN

Plasmodium falciparum exports ~10% of its proteome into its host erythrocyte to modify the host cell's physiology. The Plasmodium export element (PEXEL) motif contained within the N-terminus of most exported proteins directs the trafficking of those proteins into the erythrocyte. To reach the host cell, the PEXEL motif of exported proteins is processed by the endoplasmic reticulum (ER) resident aspartyl protease plasmepsin V. Then, following secretion into the parasite-encasing parasitophorous vacuole, the mature exported protein must be unfolded and translocated across the parasitophorous vacuole membrane by the Plasmodium translocon of exported proteins (PTEX). PTEX is a protein-conducting channel consisting of the pore-forming protein EXP2, the protein unfoldase HSP101, and structural component PTEX150. The mechanism of how exported proteins are specifically trafficked from the parasite's ER following PEXEL cleavage to PTEX complexes on the parasitophorous vacuole membrane is currently not understood. Here, we present evidence that EXP2 and PTEX150 form a stable subcomplex that facilitates HSP101 docking. We also demonstrate that HSP101 localises both within the parasitophorous vacuole and within the parasite's ER throughout the ring and trophozoite stage of the parasite, coinciding with the timeframe of protein export. Interestingly, we found that HSP101 can form specific interactions with model PEXEL proteins in the parasite's ER, irrespective of their PEXEL processing status. Collectively, our data suggest that HSP101 recognises and chaperones PEXEL proteins from the ER to the parasitophorous vacuole and given HSP101's specificity for the EXP2-PTEX150 subcomplex, this provides a mechanism for how exported proteins are specifically targeted to PTEX for translocation into the erythrocyte.


Asunto(s)
Parásitos , Plasmodium falciparum , Animales , Eritrocitos/parasitología , Parásitos/metabolismo , Plasmodium falciparum/metabolismo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo
6.
Bioorg Med Chem ; 98: 117540, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134663

RESUMEN

Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.


Asunto(s)
Antihelmínticos , Nematodos , Quinolinas , Animales , Humanos , Caenorhabditis elegans , Antihelmínticos/farmacología , Antihelmínticos/química , Relación Estructura-Actividad
7.
Med Res Rev ; 43(6): 2303-2351, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37232495

RESUMEN

Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria , Humanos , Antimaláricos/química , Proteómica , Malaria/tratamiento farmacológico , Malaria/prevención & control , Resistencia a Medicamentos
8.
Bioorg Med Chem Lett ; 35: 127813, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33486050

RESUMEN

Current techniques for the identification of DNA adduct-inducing and DNA interstrand crosslinking agents include electrophoretic crosslinking assays, electrophoretic gel shift assays, DNA and RNA stop assays, mass spectrometry-based methods and 32P-post-labelling. While these assays provide considerable insight into the site and stability of the interaction, they are relatively expensive, time-consuming and sometimes rely on the use of radioactively-labelled components, and thus are ill-suited to screening large numbers of compounds. A novel medium throughput assay was developed to overcome these limitations and was based on the attachment of a biotin-tagged double stranded (ds) oligonucleotide to Corning DNA-Bind plates. We aimed to detect anthracycline and anthracenedione DNA adducts which form by initial non-covalent intercalation with duplex DNA, and subsequent covalent adduct formation which is mediated by formaldehyde. Following drug treatment, DNA samples were subjected to a denaturation step, washing and then measurement by fluorescence to detect remaining drug-DNA species using streptavidin-europium. This dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) is a time-resolved fluorescence intensity assay where the fluorescence signal arises only from stabilised drug-DNA complexes. We applied this new methodology to the identification of anthracycline-like compounds with the ability to functionally crosslink double-strand oligonucleotides. The entire procedure can be performed by robotics, requiring low volumes of compounds and reagents, thereby reducing costs and enabling multiple compounds to be assessed on a single microtitre plate.


Asunto(s)
Automatización , Reactivos de Enlaces Cruzados/farmacología , Aductos de ADN/efectos de los fármacos , Desarrollo de Medicamentos , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad
9.
Bioorg Chem ; 117: 105359, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34689083

RESUMEN

Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.


Asunto(s)
Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Plasmodium/efectos de los fármacos , Quinazolinas/química , Quinazolinas/farmacología , Aminación , Compuestos de Anilina/uso terapéutico , Animales , Antimaláricos/uso terapéutico , Femenino , Humanos , Malaria/parasitología , Ratones , Plasmodium/fisiología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/fisiología , Quinazolinas/uso terapéutico
10.
Bioorg Chem ; 115: 105244, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34452759

RESUMEN

Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.


Asunto(s)
Antimaláricos/farmacología , Eritrocitos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium knowlesi/efectos de los fármacos , Purinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Eritrocitos/parasitología , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Purinas/síntesis química , Purinas/química , Relación Estructura-Actividad
11.
BMC Biol ; 18(1): 133, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993629

RESUMEN

BACKGROUND: Resistance to front-line antimalarials (artemisinin combination therapies) is spreading, and development of new drug treatment strategies to rapidly kill Plasmodium spp. malaria parasites is urgently needed. Azithromycin is a clinically used macrolide antibiotic proposed as a partner drug for combination therapy in malaria, which has also been tested as monotherapy. However, its slow-killing 'delayed-death' activity against the parasite's apicoplast organelle and suboptimal activity as monotherapy limit its application as a potential malaria treatment. Here, we explore a panel of azithromycin analogues and demonstrate that chemical modifications can be used to greatly improve the speed and potency of antimalarial action. RESULTS: Investigation of 84 azithromycin analogues revealed nanomolar quick-killing potency directed against the very earliest stage of parasite development within red blood cells. Indeed, the best analogue exhibited 1600-fold higher potency than azithromycin with less than 48 hrs treatment in vitro. Analogues were effective against zoonotic Plasmodium knowlesi malaria parasites and against both multi-drug and artemisinin-resistant Plasmodium falciparum lines. Metabolomic profiles of azithromycin analogue-treated parasites suggested activity in the parasite food vacuole and mitochondria were disrupted. Moreover, unlike the food vacuole-targeting drug chloroquine, azithromycin and analogues were active across blood-stage development, including merozoite invasion, suggesting that these macrolides have a multi-factorial mechanism of quick-killing activity. The positioning of functional groups added to azithromycin and its quick-killing analogues altered their activity against bacterial-like ribosomes but had minimal change on 'quick-killing' activity. Apicoplast minus parasites remained susceptible to both azithromycin and its analogues, further demonstrating that quick-killing is independent of apicoplast-targeting, delayed-death activity. CONCLUSION: We show that azithromycin and analogues can rapidly kill malaria parasite asexual blood stages via a fast action mechanism. Development of azithromycin and analogues as antimalarials offers the possibility of targeting parasites through both a quick-killing and delayed-death mechanism of action in a single, multifactorial chemotype.


Asunto(s)
Antimaláricos/farmacología , Azitromicina/análogos & derivados , Azitromicina/farmacología , Malaria/prevención & control , Plasmodium falciparum/efectos de los fármacos , Plasmodium knowlesi/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control
12.
Molecules ; 26(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068691

RESUMEN

Due to widespread multi-drug resistance in parasitic nematodes of livestock animals, there is an urgent need to discover new anthelmintics with distinct mechanisms of action. Extending previous work, here we screened a panel of 245 chemically-diverse small molecules for anti-parasitic activity against Haemonchus contortus-an economically important parasitic nematode of livestock. This panel was screened in vitro against exsheathed third-stage larvae (xL3) of H. contortus using an established phenotypic assay, and the potency of select compounds to inhibit larval motility and development assessed in dose-response assays. Of the 245 compounds screened, three-designated MPK18, MPK334 and YAK308-induced non-wildtype larval phenotypes and repeatedly inhibited xL3-motility, with IC50 values of 45.2 µM, 17.1 µM and 52.7 µM, respectively; two also inhibited larval development, with IC50 values of 12.3 µM (MPK334) and 6.5 µM (YAK308), and none of the three was toxic to human liver cells (HepG2). These findings suggest that these compounds deserve further evaluation as nematocidal candidates. Future work should focus on structure-activity relationship (SAR) studies of these chemical scaffolds, and assess the in vitro and in vivo efficacies and safety of optimised compounds against adults of H. contortus.


Asunto(s)
Haemonchus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Haemonchus/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Fenotipo , Bibliotecas de Moléculas Pequeñas/química
13.
Bioorg Med Chem ; 28(3): 115260, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31870833

RESUMEN

Mitoxantrone is an anticancer anthracenedione that can be activated by formaldehyde to generate covalent drug-DNA adducts. Despite their covalent nature, these DNA lesions are relatively labile. It was recently established that analogues of mitoxantrone featuring extended side-chains terminating in primary amino groups typically yielded high levels of stable DNA adducts following their activation by formaldehyde. In this study we describe the DNA sequence-specific binding properties of the mitoxantrone analogue WEHI-150 which is the first anthracenedione to form apparent DNA crosslinks mediated by formaldehyde. The utility of this compound lies in the versatility of the covalent binding modes displayed. Unlike other anthracenediones described to date, WEHI-150 can mediate covalent adducts that are independent of interactions with the N-2 of guanine and is capable of adduct formation at novel DNA sequences. Moreover, these covalent adducts incorporate more than one formaldehyde-mediated bond with DNA, thus facilitating the formation of highly lethal DNA crosslinks. The versatility of binding observed is anticipated to allow the next generation of anthracenediones to interact with a broader spectrum of nucleic acid species than previously demonstrated by the parent compounds, thus allowing for more diverse biological activities.


Asunto(s)
ADN/efectos de los fármacos , Formaldehído/farmacología , Mitoxantrona/farmacología , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Formaldehído/química , Espectrometría de Masas , Mitoxantrona/análogos & derivados , Mitoxantrona/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
14.
Molecules ; 25(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344703

RESUMEN

Kava extract, an aqueous rhizome emulsion of the plant Piper methysticum, has been used for centuries by Pacific Islanders as a ceremonial beverage, and has been sold as an anxiolytic agent for some decades. Kavalactones are a major constituent of kava extract. In a previous investigation, we had identified three kavalactones that inhibit larval development of Haemonchus contortus in an in vitro-bioassay. In the present study, we synthesized two kavalactones, desmethoxyyangonin and yangonin, as well as 17 analogues thereof, and evaluated their anthelmintic activities using the same bioassay as employed previously. Structure activity relationship (SAR) studies showed that a 4-substituent on the pendant aryl ring was required for activity. In particular, compounds with 4-trifluoromethoxy, 4-difluoromethoxy, 4-phenoxy, and 4-N-morpholine substitutions had anthelmintic activities (IC50 values in the range of 1.9 to 8.9 µM) that were greater than either of the parent natural products-desmethoxyyangonin (IC50 of 37.1 µM) and yangonin (IC50 of 15.0 µM). The synthesized analogues did not exhibit toxicity on HepG2 human hepatoma cells in vitro at concentrations of up to 40 µM. These findings confirm the previously-identified kavalactone scaffold as a promising chemotype for new anthelmintics and provide a basis for a detailed SAR investigation focused on developing a novel anthelmintic agent.


Asunto(s)
Antihelmínticos/síntesis química , Antihelmínticos/farmacología , Haemonchus/efectos de los fármacos , Kava/química , Animales , Relación Dosis-Respuesta a Droga , Larva/efectos de los fármacos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria
15.
Artículo en Inglés | MEDLINE | ID: mdl-30559138

RESUMEN

A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound's capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.


Asunto(s)
Compuestos de Anilina/farmacología , Antiparasitarios/farmacología , Babesia bovis/efectos de los fármacos , Cryptosporidium parvum/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Quinazolinas/farmacología , Toxoplasma/efectos de los fármacos , Animales , Antimaláricos/farmacología , Línea Celular , Cloroquina/farmacología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Pruebas de Sensibilidad Parasitaria , Ratas , Ratas Sprague-Dawley
16.
Cell Microbiol ; 19(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27781359

RESUMEN

Host cell invasion, exit and parasite dissemination is critical to the pathogenesis of apicomplexan parasites such as Toxoplasma gondii and Plasmodium spp. These processes are regulated by intracellular Ca2+ signaling although the temporal dynamics of Ca2+ fluxes and down-stream second messenger pathways are poorly understood. Here, we use a genetically encoded biosensor, GFP-Calmodulin-M13-6 (GCaMP6), to capture Ca2+ flux in live Toxoplasma and investigate the role of Ca2+ signaling in egress and motility. Our analysis determines how environmental cues and signal activation influence intracellular Ca2+ flux, allowing placement of effector molecules within this pathway. Importantly, we have identified key interrelationships between cGMP and Ca2+ signaling that are required for activation of egress and motility. Furthermore, we extend this analysis to show that the Ca2+ Dependent Protein Kinases-TgCDPK1 and TgCDPK3-play a role in signal quenching before egress. This work highlights the interrelationships of second messenger pathways of Toxoplasma in space and time, which is likely required for pathogenesis of all apicomplexan species.


Asunto(s)
Señalización del Calcio , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Interacciones Huésped-Parásitos , Humanos , Toxoplasma/fisiología
17.
Artículo en Inglés | MEDLINE | ID: mdl-28674055

RESUMEN

Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Línea Celular , Enfermedad de Chagas/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Células HEK293 , Humanos , Leishmaniasis/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Tripanosomiasis Africana/tratamiento farmacológico
18.
PLoS Biol ; 12(7): e1001897, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24983235

RESUMEN

The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Oligopéptidos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Sulfonamidas/farmacología , Retículo Endoplásmico/metabolismo , Eritrocitos/parasitología , Humanos , Transporte de Proteínas/efectos de los fármacos , Proteínas Protozoarias/metabolismo
19.
Med Res Rev ; 36(2): 248-99, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26286294

RESUMEN

Mitoxantrone is a synthetic anthracenedione originally developed to improve the therapeutic profile of the anthracyclines and is commonly applied in the treatment of breast and prostate cancers, lymphomas, and leukemias. A comprehensive overview of the drug's molecular, biochemical, and cellular pharmacology is presented here, beginning with the cardiotoxic nature of its predecessor doxorubicin and how these properties shaped the pharmacology of mitoxantrone itself. Although mitoxantrone is firmly established as a DNA topoisomerase II poison within mammalian cells, it is now clear that the drug interacts with a much broader range of biological macromolecules both covalently and noncovalently. Here, we consider each of these interactions in the context of their wider biological relevance to cancer therapy and highlight how they may be exploited to further enhance the therapeutic value of mitoxantrone. In doing so, it is now clear that mitoxantrone is more than just another topoisomerase II poison.


Asunto(s)
Mitoxantrona/farmacología , Inhibidores de Topoisomerasa II/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Ensayos Clínicos como Asunto , Descubrimiento de Drogas , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Mitoxantrona/administración & dosificación , Mitoxantrona/química , Mitoxantrona/farmacocinética , Inhibidores de Topoisomerasa II/química
20.
Org Biomol Chem ; 14(22): 4970-85, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27143279

RESUMEN

Aspartyl proteases are important pharmacological targets. Historically aspartyl proteases have been commonly targeted with transition state derived peptidomimetics. The strategy to develop aspartyl protease inhibitors has undertaken a dramatic paradigm shift in the last 10 years. The pharmaceutical industry in 2005 disclosed several scaffolds or "head groups" that prompted the field to move beyond peptidomimetic derived inhibitors. Since the discovery of the first amino heterocycle aspartyl protease inhibitor, the amino hydantoin, industry and academia have positioned themselves for a foothold on the new molecular space, designing a variety of related "head groups". Both the design and synthetic efforts involved in constructing these scaffolds are varied and complex. Here we highlight the synthetic strategies used to access these amino heterocycle scaffolds.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Técnicas de Química Sintética/métodos , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/farmacología , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/farmacología , Diseño de Fármacos , Compuestos Heterocíclicos/química , Inhibidores de Proteasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA