RESUMEN
Rationale: "Forgiveness" charts the ability of a drug or regimen to withstand nonadherence without negative clinical consequences. Objectives: We aimed to determine the influence of regimen length, regimen drugs, and dosing, and when during treatment nonadherence occurs on the forgiveness of antituberculosis regimens. Methods: Using data from three randomized controlled trials comparing experimental 4-month regimens for drug-sensitive tuberculosis with the standard 6-month regimen, we used generalized linear models to examine how the risk of a negative composite outcome changed as dose-taking decreased. The percentage of doses taken and the absolute number of doses missed were calculated during the intensive and continuation phases of treatment, and overall. A mediation analysis was undertaken to determine how much the association between intensive phase dose-taking and the negative composite outcome was mediated through continuation phase dose-taking. Measurements and Main Results: Forgiveness of the 4- and 6-month regimens did not differ for any treatment period. Importantly, 4-month regimens were no less forgiving of small numbers of absolute missed doses than the 6-month regimen (e.g., for 3-7 missed doses vs. no missed doses [baseline], 6-month regimen adjusted risk ratio 1.65 [95% confidence interval, 0.80-3.41] and 4-month regimens 1.80 [1.33-2.45]). No 4-month regimen was conclusively more forgiving than another. We found evidence of mediation by continuation phase dose-taking on the intensive phase dose-taking and negative composite outcome relationship. Conclusions: With the current appetite for, and progress toward, shorter drug-sensitive tuberculosis regimens worldwide, we offer reassurance that shorter regimens are not necessarily less forgiving of nonadherence. Given the importance of continuation phase adherence, patient support during this period should not be neglected.
Asunto(s)
Tuberculosis , Humanos , Antituberculosos/uso terapéutico , Protocolos Clínicos , Tuberculosis/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Higher doses of rifampicin may improve treatment outcomes and reduce the duration of tuberculosis (TB) therapy. However, drug-drug interactions with antiretroviral therapy (ART) and safety in people with human immunodeficiency virus (HIV) have not been evaluated. METHODS: This was a randomized, open-label trial where newly diagnosed TB patients were randomized to higher (35 mg/kg) or standard (10 mg/kg) daily-dose rifampicin. ART treatment-naive patients were randomized to dolutegravir- or efavirenz-based ART. At week 6, trough dolutegravir or mid-dose efavirenz plasma concentrations were assayed. HIV viral load was measured at week 24. RESULTS: Among 128 patients randomized, the median CD4 count was 191 cells/mm3. The geometric mean ratio (GMR) for trough dolutegravir concentrations on higher- vs standard-dose rifampicin was 0.57 (95% confidence interval [CI], .34-.97; P = .039) and the GMR for mid-dose efavirenz was 0.63 (95% CI, .38-1.07; P = .083). There was no significant difference in attainment of targets for dolutegravir trough or efavirenz mid-dose concentrations between rifampicin doses. The incidence of HIV treatment failure at week 24 was similar between rifampicin doses (14.9% vs 14.0%, P = .901), as was the incidence of drug-related grade 3-4 adverse events (9.8% vs 6%). At week 8, fewer patients remained sputum culture positive on higher-dose rifampicin (18.6% vs 37.0%, P = .063). CONCLUSIONS: Compared with standard-dose rifampicin, high-dose rifampicin reduced dolutegravir and efavirenz exposures, but HIV suppression was similar across treatment arms. Higher-dose rifampicin was well tolerated among people with HIV and associated with a trend toward faster sputum culture conversion. CLINICAL TRIALS REGISTRATION: NCT03982277.
Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Tuberculosis , Humanos , Rifampin , VIH , Benzoxazinas/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/complicaciones , Infecciones por VIH/complicacionesRESUMEN
BACKGROUND: A key factor driving the development and maintenance of antibacterial resistance (ABR) is individuals' use of antibiotics (ABs) to treat illness. To better understand motivations and context for antibiotic use we use the concept of a patient treatment-seeking pathway: a treatment journey encompassing where patients go when they are unwell, what motivates their choices, and how they obtain antibiotics. This paper investigates patterns and determinants of patient treatment-seeking pathways, and how they intersect with AB use in East Africa, a region where ABR-attributable deaths are exceptionally high. METHODS: The Holistic Approach to Unravelling Antibacterial Resistance (HATUA) Consortium collected quantitative data from 6,827 adult outpatients presenting with urinary tract infection (UTI) symptoms in Kenya, Tanzania, and Uganda between February 2019- September 2020, and conducted qualitative in-depth patient interviews with a subset (n = 116). We described patterns of treatment-seeking visually using Sankey plots and explored explanations and motivations using mixed-methods. Using Bayesian hierarchical regression modelling, we investigated the associations between socio-demographic, economic, healthcare, and attitudinal factors and three factors related to ABR: self-treatment as a first step, having a multi-step treatment pathway, and consuming ABs. RESULTS: Although most patients (86%) sought help from medical facilities in the first instance, many (56%) described multi-step, repetitive treatment-seeking pathways, which further increased the likelihood of consuming ABs. Higher socio-economic status patients were more likely to consume ABs and have multi-step pathways. Reasons for choosing providers (e.g., cost, location, time) were conditioned by wider structural factors such as hybrid healthcare systems and AB availability. CONCLUSION: There is likely to be a reinforcing cycle between complex, repetitive treatment pathways, AB consumption and ABR. A focus on individual antibiotic use as the key intervention point in this cycle ignores the contextual challenges patients face when treatment seeking, which include inadequate access to diagnostics, perceived inefficient public healthcare and ease of purchasing antibiotics without prescription. Pluralistic healthcare landscapes may promote more complex treatment seeking and therefore inappropriate AB use. We recommend further attention to healthcare system factors, focussing on medical facilities (e.g., accessible diagnostics, patient-doctor interactions, information flows), and community AB access points (e.g., drug sellers).
Asunto(s)
Antibacterianos , Atención a la Salud , Adulto , Humanos , Investigación Cualitativa , Teorema de Bayes , Uganda , Antibacterianos/farmacología , Antibacterianos/uso terapéuticoRESUMEN
BACKGROUND: Intrapulmonary pharmacokinetics may better explain response to tuberculosis (TB) treatment than plasma pharmacokinetics. We explored these relationships by modeling bacillary clearance in sputum in adult patients on first-line treatment in Malawi. METHODS: Bacillary elimination rates (BER) were estimated using linear mixed-effects modelling of serial time-to-positivity in mycobacterial growth indicator tubes for sputum collected during the intensive phase of treatment (weeks 0-8) for microbiologically confirmed TB. Population pharmacokinetic models used plasma and intrapulmonary drug levels at 8 and 16 weeks. Pharmacokinetic-pharmacodynamic relationships were investigated using individual-level measures of drug exposure (area-under-the-concentration-time-curve [AUC] and Cmax) for rifampicin, isoniazid, pyrazinamide, and ethambutol, in plasma, epithelial lining fluid, and alveolar cells as covariates in the bacillary elimination models. RESULTS: Among 157 participants (58% human immunodeficiency virus [HIV] coinfected), drug exposure in plasma or alveolar cells was not associated with sputum bacillary clearance. Higher peak concentrations (Cmax) or exposure (AUC) to rifampicin or isoniazid in epithelial lining fluid was associated with more rapid bacillary elimination and shorter time to sputum negativity. More extensive disease on baseline chest radiograph was associated with slower bacillary elimination. Clinical outcome was captured in 133 participants, with 15 (11%) unfavorable outcomes recorded (recurrent TB, failed treatment, or death). No relationship between BER and late clinical outcome was identified. CONCLUSIONS: Greater intrapulmonary drug exposure to rifampicin or isoniazid in the epithelial lining fluid was associated with more rapid bacillary clearance. Higher doses of rifampicin and isoniazid may result in sustained high intrapulmonary drug exposure, rapid bacillary clearance, shorter treatment duration and better treatment outcomes.
Asunto(s)
Bacillus , Tuberculosis Pulmonar , Adulto , Humanos , Isoniazida/uso terapéutico , Isoniazida/farmacocinética , Rifampin/farmacocinética , Esputo/microbiología , Antituberculosos/farmacocinética , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Pirazinamida/farmacocinética , Etambutol/uso terapéuticoRESUMEN
BACKGROUND: Further work is required to understand the intrapulmonary pharmacokinetics of first-line anti-tuberculosis drugs. This study aimed to describe the plasma and intrapulmonary pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol, and explore relationships with clinical treatment outcomes in patients with pulmonary tuberculosis. METHODS: Malawian adults with a first presentation of microbiologically confirmed pulmonary tuberculosis received standard 6-month first-line therapy. Plasma and intrapulmonary samples were collected 8 and 16 weeks into treatment and drug concentrations measured in plasma, lung/airway epithelial lining fluid (ELF), and alveolar cells. Population pharmacokinetic modeling generated estimates of drug exposure (Cmax and AUC) from individual-level post hoc Bayesian estimates of plasma and intrapulmonary pharmacokinetics. RESULTS: One-hundred fifty-seven patients (58% HIV coinfected) participated. Despite standard weight-based dosing, peak plasma concentrations of first-line drugs were below therapeutic drug-monitoring targets. Rifampicin concentrations were low in all 3 compartments. Isoniazid, pyrazinamide, and ethambutol achieved higher concentrations in ELF and alveolar cells than plasma. Isoniazid and pyrazinamide concentrations were 14.6-fold (95% CI, 11.2-18.0-fold) and 49.8-fold (95% CI, 34.2-65.3-fold) higher in ELF than plasma, respectively. Ethambutol concentrations were highest in alveolar cells (alveolar cell-plasma ratio, 15.0; 95% CI, 11.4-18.6). Plasma or intrapulmonary pharmacokinetics did not predict clinical treatment response. CONCLUSIONS: We report differential drug concentrations between plasma and the lung. While plasma concentrations were below therapeutic monitoring targets, accumulation of drugs at the site of disease may explain the success of the first-line regimen. The low rifampicin concentrations observed in all compartments lend strong support for ongoing clinical trials of high-dose rifampicin regimens.
Asunto(s)
Antituberculosos , Tuberculosis , Antituberculosos/uso terapéutico , Teorema de Bayes , Etambutol , Humanos , Isoniazida , Pirazinamida , Tuberculosis/tratamiento farmacológicoRESUMEN
AIMS: Patients on antituberculosis (anti-TB) therapy are at risk of drug-induced liver injury (DILI). MicroRNA-122 (miR-122) and cytokeratin-18 (K18) are DILI biomarkers. To explore their utility in this global context, circulating miR-122 and K18 were measured in UK and Ugandan populations on anti-TB therapy for mycobacterial infection. METHODS: Healthy subjects and patients receiving anti-TB therapy were recruited at the Royal Infirmary of Edinburgh, UK (ALISTER-ClinicalTrials.gov Identifier: NCT03211208). African patients with human immunodeficiency virus-TB coinfection were recruited at the Infectious Diseases Institute, Kampala, Uganda (SAEFRIF-NCT03982277). Serial blood samples, demographic and clinical data were collected. In ALISTER samples, MiR-122 was quantified using polymerase chain reaction. In ALISTER and SAEFRIF samples, K18 was quantified by enzyme-linked immunosorbent assay. RESULTS: The study had 235 participants (healthy volunteers [n = 28]; ALISTER: active TB [n = 30], latent TB [n = 88], nontuberculous mycobacterial infection [n = 25]; SAEFRIF: human immunodeficiency virus-TB coinfection [n = 64]). In the absence of DILI, there was no difference in miR-122 and K18 across the groups. Both miR-122 and K18 correlated with alanine transaminase (ALT) activity (miR-122: R = .52, 95%CI = 0.42-0.61, P < .0001. K18: R =0.42, 95%CI = 0.34-0.49, P < .0001). miR-122 distinguished those patients with ALT>50 U/L with higher sensitivity/specificity than K18. There were 2 DILI cases: baseline ALT, 18 and 28 IU/L, peak ALT 431 and 194 IU/L; baseline K18, 58 and 219 U/L, peak K18 1247 and 3490 U/L; baseline miR-122 4 and 17 fM, peak miR-122 60 and 336 fM, respectively. CONCLUSION: In patients treated with anti-TB therapy, miR-122 and K18 correlated with ALT and increased with DILI. Further work should determine their diagnostic and prognostic utility in this global context-of-use.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , MicroARNs , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Queratina-18 , Uganda/epidemiologíaRESUMEN
BACKGROUND: Large sample sizes are often required to detect statistically significant associations between pharmacogenetic markers and treatment response. Meta-analysis may be performed to synthesize data from several studies, increasing sample size and, consequently, power to detect significant genetic effects. However, performing robust synthesis of data from pharmacogenetic studies is often challenging because of poor reporting of key data in study reports. There is currently no guideline for the reporting of pharmacogenetic studies that has been developed using a widely accepted robust methodology. The objective of this project was to develop the STrengthening the Reporting Of Pharmacogenetic Studies (STROPS) guideline. METHODS AND FINDINGS: We established a preliminary checklist of reporting items to be considered for inclusion in the guideline. We invited representatives of key stakeholder groups to participate in a 2-round Delphi survey. A total of 52 individuals participated in both rounds of the survey, scoring items with regards to their importance for inclusion in the STROPS guideline. We then held a consensus meeting, at which 8 individuals considered the results of the Delphi survey and voted on whether each item ought to be included in the final guideline. The STROPS guideline consists of 54 items and is accompanied by an explanation and elaboration document. The guideline contains items that are particularly important in the field of pharmacogenetics, such as the drug regimen of interest and whether adherence to treatment was accounted for in the conducted analyses. The guideline also requires that outcomes be clearly defined and justified, because in pharmacogenetic studies, there may be a greater number of possible outcomes than in other types of study (for example, disease-gene association studies). A limitation of this project is that our consensus meeting involved a small number of individuals, the majority of whom are based in the United Kingdom. CONCLUSIONS: Our aim is for the STROPS guideline to improve the transparency of reporting of pharmacogenetic studies and also to facilitate the conduct of high-quality systematic reviews and meta-analyses. We encourage authors to adhere to the STROPS guideline when publishing pharmacogenetic studies.
Asunto(s)
Farmacogenética/métodos , Pruebas de Farmacogenómica/normas , Pruebas de Farmacogenómica/tendencias , Adulto , Lista de Verificación , Consenso , Técnica Delphi , Femenino , Estudios de Asociación Genética , Objetivos , Humanos , Masculino , Persona de Mediana Edad , Farmacogenética/normas , Política , Edición/normas , Proyectos de Investigación/normas , Participación de los Interesados , Encuestas y Cuestionarios , Reino UnidoRESUMEN
BACKGROUND: Linezolid was recently re-classified as a Group A drug by the World Health Organization (WHO) for treatment of multi-drug resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), suggesting that it should be included in the regimen for all patients unless contraindicated. Linezolid use carries a considerable risk of toxicity, with the optimal dose and duration remaining unclear. Current guidelines are mainly based on evidence from observational non-comparative studies. OBJECTIVES: To assess the efficacy of linezolid when used as part of a second-line regimen for treating people with MDR and XDR pulmonary tuberculosis, and to assess the prevalence and severity of adverse events associated with linezolid use in this patient group. SEARCH METHODS: We searched the following databases: the Cochrane Infectious Diseases Specialized Register; CENTRAL; MEDLINE; Embase; and LILACS up to 13 July 2018. We also checked article reference lists and contacted researchers in the field. SELECTION CRITERIA: We included studies in which some participants received linezolid, and others did not. We included randomized controlled trials (RCTs) of linezolid for MDR and XDR pulmonary tuberculosis to evaluate efficacy outcomes. We added non-randomized cohort studies to evaluate adverse events.Primary outcomes were all-cause and tuberculosis-associated death, treatment failure, and cure. Secondary outcomes were treatment interrupted, treatment completed, and time to sputum culture conversion. We recorded frequency of all and serious adverse events, adverse events leading to drug discontinuation or dose reduction, and adverse events attributed to linezolid, particularly neuropathy, anaemia, and thrombocytopenia. DATA COLLECTION AND ANALYSIS: Two review authors (BS and DC) independently assessed the search results for eligibility and extracted data from included studies. All review authors assessed risk of bias using the Cochrane 'Risk of bias' tool for RCTs and the ROBINS-I tool for non-randomized studies. We contacted study authors for clarification and additional data when necessary.We were unable to perform a meta-analysis as one of the RCTs adopted a study design where participants in the study group received linezolid immediately and participants in the control group received linezolid after two months, and therefore there were no comparable data from this trial. We deemed meta-analysis of non-randomized study data inappropriate. MAIN RESULTS: We identified three RCTs for inclusion. One of these studies had serious problems with allocation of the study drug and placebo, so we could not analyse data for intervention effect from it. The remaining two RCTs recruited 104 participants. One randomized 65 participants to receive linezolid or not, in addition to a background regimen; the other randomized 39 participants to addition of linezolid to a background regimen immediately, or after a delay of two months. We included 14 non-randomized cohort studies (two prospective, 12 retrospective), with a total of 1678 participants.Settings varied in terms of income and tuberculosis burden. One RCT and 7 out of 14 non-randomized studies commenced recruitment in or after 2009. All RCT participants and 38.7% of non-randomized participants were reported to have XDR-TB.Dosing and duration of linezolid in studies were variable and reported inconsistently. Daily doses ranged from 300 mg to 1200 mg; some studies had planned dose reduction for all participants after a set time, others had incompletely reported dose reductions for some participants, and most did not report numbers of participants receiving each dose. Mean or median duration of linezolid therapy was longer than 90 days in eight of the 14 non-randomized cohorts that reported this information.Duration of participant follow-up varied between RCTs. Only five out of 14 non-randomized studies reported follow-up duration.Both RCTs were at low risk of reporting bias and unclear risk of selection bias. One RCT was at high risk of performance and detection bias, and low risk for attrition bias, for all outcomes. The other RCT was at low risk of detection and attrition bias for the primary outcome, with unclear risk of detection and attrition bias for non-primary outcomes, and unclear risk of performance bias for all outcomes. Overall risk of bias for the non-randomized studies was critical for three studies, and serious for the remaining 11.One RCT reported higher cure (risk ratio (RR) 2.36, 95% confidence interval (CI) 1.13 to 4.90, very low-certainty evidence), lower failure (RR 0.26, 95% CI 0.10 to 0.70, very low-certainty evidence), and higher sputum culture conversion at 24 months (RR 2.10, 95% CI 1.30 to 3.40, very low-certainty evidence), amongst the linezolid-treated group than controls, with no differences in other primary and secondary outcomes. This study also found more anaemia (17/33 versus 2/32), nausea and vomiting, and neuropathy (14/33 versus 1/32) events amongst linezolid-receiving participants. Linezolid was discontinued early and permanently in two of 33 (6.1%) participants who received it.The other RCT reported higher sputum culture conversion four months after randomization (RR 2.26, 95% CI 1.19 to 4.28), amongst the group who received linezolid immediately compared to the group who had linezolid initiation delayed by two months. Linezolid was discontinued early and permanently in seven of 39 (17.9%) participants who received it.Linezolid discontinuation occurred in 22.6% (141/624; 11 studies), of participants in the non-randomized studies. Total, serious, and linezolid-attributed adverse events could not be summarized quantitatively or comparatively, due to incompleteness of data on duration of follow-up and numbers of participants experiencing events. AUTHORS' CONCLUSIONS: We found some evidence of efficacy of linezolid for drug-resistant pulmonary tuberculosis from RCTs in participants with XDR-TB but adverse events and discontinuation of linezolid were common. Overall, there is a lack of comparative data on efficacy and safety. Serious risk of bias and heterogeneity in conducting and reporting non-randomized studies makes the existing, mostly retrospective, data difficult to interpret. Further prospective cohort studies or RCTs in high tuberculosis burden low-income and lower-middle-income countries would be useful to inform policymakers and clinicians of the efficacy and safety of linezolid as a component of drug-resistant TB treatment regimens.
Asunto(s)
Antibióticos Antituberculosos/uso terapéutico , Linezolid/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico , Antibióticos Antituberculosos/efectos adversos , Humanos , Linezolid/efectos adversos , Ensayos Clínicos Controlados no Aleatorios como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Tuberculosis Resistente a Múltiples Medicamentos/mortalidad , Tuberculosis Pulmonar/mortalidad , Privación de Tratamiento/estadística & datos numéricosRESUMEN
Objectives: The oxazolidinone linezolid is an effective component of drug-resistant TB treatment, but its use is limited by toxicity and the optimum dose is uncertain. Current strategies are not informed by clinical pharmacokinetic (PK)/pharmacodynamic (PD) data; we aimed to address this gap. Methods: We defined linezolid PK/PD targets for efficacy (fAUC0-24:MIC >119 mg/L/h) and safety (fCmin <1.38 mg/L). We extracted individual-level linezolid PK data from existing studies on TB patients and performed meta-analysis, producing summary estimates of fAUC0-24 and fCmin for published doses. Combining these with a published MIC distribution, we performed Monte Carlo simulations of target attainment. Results: The efficacy target was attained in all simulated individuals at 300 mg q12h and 600 mg q12h, but only 20.7% missed the safety target at 300 mg q12h versus 98.5% at 600 mg q12h. Although suggesting 300 mg q12h should be used preferentially, these data were reliant on a single centre. Efficacy and safety targets were missed by 41.0% and 24.2%, respectively, at 300 mg q24h and by 44.6% and 27.5%, respectively, at 600 mg q24h. However, the confounding effect of between-study heterogeneity on target attainment for q24h regimens was considerable. Conclusions: Linezolid dosing at 300 mg q12h may retain the efficacy of the 600 mg q12h licensed dosing with improved safety. Data to evaluate commonly used 300 mg q24h and 600 mg q24h doses are limited. Comprehensive, prospectively obtained PK/PD data for linezolid doses in drug-resistant TB treatment are required.
Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Linezolid/administración & dosificación , Linezolid/farmacocinética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Mycobacterium tuberculosis/efectos de los fármacosRESUMEN
Variable exposure to antituberculosis (TB) drugs, partially driven by genetic factors, may be associated with poor clinical outcomes. Previous studies have suggested an influence of the SLCO1B1 locus on the plasma area under the concentration-time curve (AUC) of rifampin. We evaluated the contribution of single nucleotide polymorphisms (SNPs) in SLCO1B1 and other candidate genes (AADAC and CES-1) to interindividual pharmacokinetic variability in Malawi. A total of 174 adults with pulmonary TB underwent sampling of plasma rifampin concentrations at 2 and 6 h postdose. Data from a prior cohort of 47 intensively sampled, similar patients from the same setting were available to support population pharmacokinetic model development in NONMEM v7.2, using a two-stage strategy to improve information during the absorption phase. In contrast to recent studies in South Africa and Uganda, SNPs in SLCO1B1 did not explain variability in AUC0-∞ of rifampin. No pharmacokinetic associations were identified with AADAC or CES-1 SNPs, which were rare in the Malawian population. Pharmacogenetic determinants of rifampin exposure may vary between African populations. SLCO1B1 and other novel candidate genes, as well as nongenetic sources of interindividual variability, should be further explored in geographically diverse, adequately powered cohorts.
Asunto(s)
Antibióticos Antituberculosos/farmacología , Antibióticos Antituberculosos/farmacocinética , Antituberculosos/farmacología , Antituberculosos/farmacocinética , Rifampin/farmacología , Rifampin/farmacocinética , Tuberculosis Pulmonar/genética , Adulto , Hidrolasas de Éster Carboxílico/genética , Genotipo , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Malaui , Polimorfismo de Nucleótido Simple/genética , Sudáfrica , UgandaRESUMEN
BACKGROUND: Screening household contacts of active tuberculosis (TB) patients is recommended for TB control. Due to resource constraints this rarely occurs in lower income countries. Demographic and clinical features of index cases may influence the likelihood of onwards TB transmission. It has also been proposed that accumulation of intracellular lipid bodies within M. tuberculosis cells may also enhance bacterial transmissibility. This study explored whether clinical and bacteriological observations recorded at baseline in TB cases in Malawi could help identify those with the highest risk of onwards transmission, to prioritise contact tracing. METHODS: In this case-contact study, data on clinical presentation, sputum bacterial load and the percentage of lipid body positive acid-fast bacilli (%LB + AFB) on sputum smears were recorded in adults with sputum smear and culture positive pulmonary TB before initiation of therapy. The Tuberculin Skin Test (TST) was used to detect infection with M. tuberculosis amongst household contacts under the age of 15 years. TST positivity of the child contacts was related to characteristics of the index case. RESULTS: Thirty four index cases brought 56 contacts (median: 1, range: 1-4 contacts each). 37 (66%) of contacts had a positive TST. Cavities or a high percentage of lung affected on index patient CXRs were associated with TST positivity. Multivariate analysis of non-radiological factors showed that male sex, HIV-negative status and raised peripheral blood white blood count (WBC) in index patients were also independent risk factors of TST positivity. Lower %LB + AFB counts were associated with TST positivity on univariate analysis only. CONCLUSION: TST positivity is common amongst household contacts of sputum smear positive adult TB patients in Malawi. Contact tracing in this high risk population could be guided by prioritising index cases with CXR cavities and extensive radiological disease or, in the absence of CXRs, those who are HIV-negative with a raised WBC.
Asunto(s)
Prueba de Tuberculina , Tuberculosis Pulmonar/diagnóstico , Adolescente , Adulto , Anciano , Carga Bacteriana , Niño , Preescolar , Demografía , Salud de la Familia , Femenino , Humanos , Malaui , Masculino , Persona de Mediana Edad , Análisis Multivariante , Mycobacterium tuberculosis , Pobreza , Factores de Riesgo , Esputo/microbiología , Tuberculosis Pulmonar/transmisión , Adulto JovenRESUMEN
BACKGROUND: Antibiotic-tolerant bacterial persistence prevents treatment shortening in drug-susceptible tuberculosis, and accumulation of intracellular lipid bodies has been proposed to identify a persister phenotype of Mycobacterium tuberculosis cells. In Malawi, we modeled bacillary elimination rates (BERs) from sputum cultures and calculated the percentage of lipid body-positive acid-fast bacilli (%LB + AFB) on sputum smears. We assessed whether these putative measurements of persistence predict unfavorable outcomes (treatment failure/relapse). METHODS: Adults with pulmonary tuberculosis received standard 6-month therapy. Sputum samples were collected during the first 8 weeks for serial sputum colony counting (SSCC) on agar and time-to positivity (TTP) measurement in mycobacterial growth indicator tubes. BERs were extracted from nonlinear and linear mixed-effects models, respectively, fitted to these datasets. The %LB + AFB counts were assessed by fluorescence microscopy. Patients were followed until 1 year posttreatment. Individual BERs and %LB + AFB counts were related to final outcomes. RESULTS: One hundred and thirty-three patients (56% HIV coinfected) participated, and 15 unfavorable outcomes were reported. These were inversely associated with faster sterilization phase bacillary elimination from the SSCC model (odds ratio [OR], 0.39; 95% confidence interval [CI], .22-.70) and a faster BER from the TTP model (OR, 0.71; 95% CI, .55-.94). Higher %LB + AFB counts on day 21-28 were recorded in patients who suffered unfavorable final outcomes compared with those who achieved stable cure (P = .008). CONCLUSIONS: Modeling BERs predicts final outcome, and high %LB + AFB counts 3-4 weeks into therapy may identify a persister bacterial phenotype. These methods deserve further evaluation as surrogate endpoints for clinical trials.
Asunto(s)
Monitoreo de Drogas/métodos , Gotas Lipídicas , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/ultraestructura , Esputo/citología , Esputo/microbiología , Tuberculosis Pulmonar/tratamiento farmacológico , Adolescente , Adulto , Anciano , Recuento de Colonia Microbiana , Femenino , Humanos , Malaui , Masculino , Persona de Mediana Edad , Modelos Teóricos , Estudios Prospectivos , Resultado del Tratamiento , Adulto JovenRESUMEN
Background: In low- and middle-income countries, symptomatic urinary tract infection (UTI) patients are often prescribed antibiotics without microbiological confirmation. UTIs caused by antibiotic-resistant bacteria are increasingly common, and this heightens the risk of empirical treatment failure. This study evaluates the appropriateness of empirical antibiotic therapy to UTI patients in Nairobi County, Kenya. Methods: A hospital-based, cross-sectional study was conducted in Nairobi County, Kenya, amongst symptomatic adult and child patients. UTI was defined as a monoculture growth with colony counts of ≥104 cfu/mL. Antimicrobial susceptibility testing was performed by the Kirby-Bauer disc diffusion method. Empirical therapy was considered appropriate if the pathogen isolated was susceptible to the prescribed antibiotic and inappropriate if the pathogen was resistant to the prescribed antibiotic. Results: A total of 552 participants were enrolled with a median age of 29 years (interquartile range: 24-36). The majority were female, 398 (72%). Of the 552, 274 (50%) received empirical antibiotic therapy, and 95/274 (35%) were confirmed to have UTI by culture. The antibiotics most frequently prescribed were fluoroquinolones [ciprofloxacin in 80 (30%) and levofloxacin 43 (16%)], amoxicillin-clavulanic acid in 48 (18%) and nitrofurantoin in 32 (12%). Amongst the 95 patients with bacteriological confirmation of UTI, 50 (53%) received appropriate empirical antibiotic therapy, whilst for 38 (40%) participants, the therapy was inappropriate. Conclusions: The complexity of appropriate empirical treatment for UTIs is compounded by high levels of resistance in UTI pathogens. Antimicrobial resistance surveillance strategies that could help in designing appropriate empirical regimens in resource constrained settings should be adopted for optimal empiric therapy.
RESUMEN
The BACTEC Mycobacteria Growth Indicator Tube (MGIT) machine is the standard globally for detecting viable mycobacteria in patients' sputum. Samples are observed for no longer than 42 days, at which point the sample is declared "negative" for tuberculosis (TB). This time to detection of bacterial growth, referred to as time-to-positivity (TTP), is increasingly of interest not solely as a diagnostic tool, but as a continuous biomarker wherein change in TTP over time can be used for comparing the bactericidal activity of different TB treatments. However, as a continuous measure, there are oddities in the distribution of TTP values observed, particularly at higher values. We explored whether there is evidence to suggest setting an upper limit of quantification (ULOQM) lower than the diagnostic limit of detection (LOD) using data from several TB-PACTS randomized clinical trials and PanACEA MAMS-TB. Across all trials, less than 7.1% of all weekly samples returned TTP measurements between 25 and 42 days. Further, the relative absolute prediction error (%) was highest in this range. When modeling with ULOQMs of 25 and 30 days, the precision in estimation improved for 23 of 25 regimen-level slopes as compared to models using the diagnostic LOD while also improving the discrimination between regimens based on Bayesian posteriors. While TTP measurements between 25 days and the diagnostic LOD may be important for diagnostic purposes, TTP values in this range may not contribute meaningfully to its use as a quantitative measure, particularly when assessing treatment response, and may lead to under-powered clinical trials.
RESUMEN
Tuberculosis drug development has stagnated for decades, so the recent availability of bedaquiline is welcome. Bedaquiline-containing regimens, now the first-line therapy recommended by WHO, have transformed the treatment of drug-resistant tuberculosis, offering safer and more effective oral treatment options. However, key obstacles need to be overcome to ensure global access and prevent the rapid development of resistance against this promising class of drugs. In this Personal View, building on an international workshop held in 2023, we evaluate the current evidence and suggest possible ways forward, recognising the tension between increasing use and slowing the rise of resistance. We also discuss problems in accessing bedaquiline-containing regimens, the potential widening of their use beyond drug-resistant tuberculosis, and lessons for utilising new drugs as they are developed.
RESUMEN
Background: There is still little empirical evidence on how the outbreak of coronavirus disease 2019 (COVID-19) and associated regulations may have disrupted care-seeking for non-COVID-19 conditions or affected antibiotic behaviours in low- and middle-income countries (LMICs). We aimed to investigate the differences in treatment-seeking behaviours and antibiotic use for urinary tract infection (UTI)-like symptoms before and during the pandemic at recruitment sites in two East African countries with different COVID-19 control policies: Mbarara, Uganda and Mwanza, Tanzania. Methods: In this repeated cross-sectional study, we used data from outpatients (pregnant adolescents aged >14 and adults aged >18) with UTI-like symptoms who visited health facilities in Mwanza, Tanzania and Mbarara, Uganda. We assessed the prevalence of self-reported behaviours (delays in care-seeking, providers visited, antibiotics taken) at three different time points, labelled as 'pre-COVID-19 phase' (February 2019 to February 2020), 'COVID-19 phase 1' (March 2020 to April 2020), and 'COVID-19 phase 2' (July 2021 to February 2022). Results: In both study sites, delays in care-seeking were less common during the pandemic than they were in the pre-COVID phase. Patients in Mwanza, Tanzania had shorter care-seeking pathways during the pandemic compared to before it, but this difference was not observed in Mbarara, Uganda. Health centres were the dominant sources of antibiotics in both settings. Over time, reported antibiotic use for UTI-like symptoms became more common in both settings. During the COVID-19 phases, there was a significant increase in self-reported use of antibiotics like metronidazole (<30% in the pre-COVID-19 phase to 40% in COVID phase 2) and doxycycline (30% in the pre-COVID-19 phase to 55% in COVID phase 2) that were not recommended for treating UTI-like symptoms in the National Treatment Guidelines in Mbarara, Uganda. Conclusions: There was no clear evidence that patients with UTI-like symptoms attending health care facilities had longer or more complex treatment pathways despite strict government-led interventions related to COVID-19. However, antibiotic use increased over time, including some antibiotics not recommended for treating UTI, which has implications for future antimicrobial resistance.
Asunto(s)
COVID-19 , Infecciones Urinarias , Adulto , Embarazo , Femenino , Adolescente , Humanos , Antibacterianos/uso terapéutico , Estudios Transversales , Uganda/epidemiología , Tanzanía/epidemiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/epidemiología , Infecciones Urinarias/diagnósticoRESUMEN
Background: In low- and middle-income countries, antibiotics are often prescribed for patients with symptoms of urinary tract infections (UTIs) without microbiological confirmation. Inappropriate antibiotic use can contribute to antimicrobial resistance (AMR) and the selection of MDR bacteria. Data on antibiotic susceptibility of cultured bacteria are important in drafting empirical treatment guidelines and monitoring resistance trends, which can prevent the spread of AMR. In East Africa, antibiotic susceptibility data are sparse. To fill the gap, this study reports common microorganisms and their susceptibility patterns isolated from patients with UTI-like symptoms in Kenya, Tanzania and Uganda. Within each country, patients were recruited from three sites that were sociodemographically distinct and representative of different populations. Methods: UTI was defined by the presence of >104â cfu/mL of one or two uropathogens in mid-stream urine samples. Identification of microorganisms was done using biochemical methods. Antimicrobial susceptibility testing was performed by the Kirby-Bauer disc diffusion assay. MDR bacteria were defined as isolates resistant to at least one agent in three or more classes of antimicrobial agents. Results: Microbiologically confirmed UTI was observed in 2653 (35.0%) of the 7583 patients studied. The predominant bacteria were Escherichia coli (37.0%), Staphylococcus spp. (26.3%), Klebsiella spp. (5.8%) and Enterococcus spp. (5.5%). E. coli contributed 982 of the isolates, with an MDR proportion of 52.2%. Staphylococcus spp. contributed 697 of the isolates, with an MDR rate of 60.3%. The overall proportion of MDR bacteria (nâ=â1153) was 50.9%. Conclusions: MDR bacteria are common causes of UTI in patients attending healthcare centres in East African countries, which emphasizes the need for investment in laboratory culture capacity and diagnostic algorithms to improve accuracy of diagnosis that will lead to appropriate antibiotic use to prevent and control AMR.
RESUMEN
The global health crisis of antibacterial resistance (ABR) poses a particular threat in low-resource settings like East Africa. Interventions for ABR typically target antibiotic use, overlooking the wider set of factors which drive vulnerability and behaviours. In this cross-sectional study, we investigated the joint contribution of behavioural, environmental, socioeconomic, and demographic factors associated with higher risk of multi-drug resistant urinary tract infections (MDR UTIs) in Kenya, Tanzania, and Uganda. We sampled outpatients with UTI symptoms in healthcare facilities and linked their microbiology data with patient, household and community level data. Using bivariate statistics and Bayesian profile regression on a sample of 1610 individuals, we show that individuals with higher risk of MDR UTIs were more likely to have compound and interrelated social and environmental disadvantages: they were on average older, with lower education, had more chronic illness, lived in resource-deprived households, more likely to have contact with animals, and human or animal waste. This suggests that interventions to tackle ABR need to take account of intersectional socio-environmental disadvantage as a priority.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones Urinarias , Humanos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/epidemiología , Infecciones Urinarias/microbiología , Femenino , Masculino , Adulto , Antibacterianos/uso terapéutico , Estudios Transversales , Persona de Mediana Edad , Adulto Joven , Teorema de Bayes , Adolescente , Tanzanía/epidemiología , África Oriental/epidemiología , Kenia/epidemiología , Factores de Riesgo , Uganda/epidemiología , Factores Socioeconómicos , AncianoRESUMEN
Antibacterial resistance (ABR) is a major public health threat. An important accelerating factor is treatment-seeking behaviour, including inappropriate antibiotic (AB) use. In many low- and middle-income countries (LMICs) this includes taking ABs with and without prescription sourced from various providers, including health facilities and community drug sellers. However, investigations of complex treatment-seeking, AB use and drug resistance in LMICs are scarce. The Holistic Approach to Unravel Antibacterial Resistance in East Africa (HATUA) Consortium collected questionnaire and microbiological data from adult outpatients with urinary tract infection (UTI)-like symptoms presenting at healthcare facilities in Kenya, Tanzania and Uganda. Using data from 6,388 patients, we analysed patterns of self-reported treatment seeking behaviours ('patient pathways') using process mining and single-channel sequence analysis. Among those with microbiologically confirmed UTI (n = 1,946), we used logistic regression to assess the relationship between treatment seeking behaviour, AB use, and the likelihood of having a multi-drug resistant (MDR) UTI. The most common treatment pathway for UTI-like symptoms in this sample involved attending health facilities, rather than other providers like drug sellers. Patients from sites in Tanzania and Uganda, where over 50% of patients had an MDR UTI, were more likely to report treatment failures, and have repeat visits to providers than those from Kenyan sites, where MDR UTI proportions were lower (33%). There was no strong or consistent relationship between individual AB use and likelihood of MDR UTI, after accounting for country context. The results highlight the hurdles East African patients face in accessing effective UTI care. These challenges are exacerbated by high rates of MDR UTI, suggesting a vicious cycle of failed treatment attempts and sustained selection for drug resistance. Whilst individual AB use may contribute to the risk of MDR UTI, our data show that factors related to context are stronger drivers of variations in ABR.
RESUMEN
BACKGROUND: The current tuberculosis (TB) drug development pipeline is being re-populated with candidates, including nitroimidazoles such as pretomanid, that exhibit a potential to shorten TB therapy by exerting a bactericidal effect on non-replicating bacilli. Based on results from preclinical and early clinical studies, a four-drug combination of bedaquiline, pretomanid, moxifloxacin, and pyrazinamide (BPaMZ) regimen was identified with treatment-shortening potential for both drug-susceptible (DS) and drug-resistant (DR) TB. This trial aimed to determine the safety and efficacy of BPaMZ. We compared 4 months of BPaMZ to the standard 6 months of isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE) in DS-TB. 6 months of BPaMZ was assessed in DR-TB. METHODS: SimpliciTB was a partially randomised, phase 2c, open-label, clinical trial, recruiting participants at 26 sites in eight countries. Participants aged 18 years or older with pulmonary TB who were sputum smear positive for acid-fast bacilli were eligible for enrolment. Participants with DS-TB had Mycobacterium tuberculosis with sensitivity to rifampicin and isoniazid. Participants with DR-TB had M tuberculosis with resistance to rifampicin, isoniazid, or both. Participants with DS-TB were randomly allocated in a 1:1 ratio, stratified by HIV status and cavitation on chest radiograph, using balanced block randomisation with a fixed block size of four. The primary efficacy endpoint was time to sputum culture-negative status by 8 weeks; the key secondary endpoint was unfavourable outcome at week 52. A non-inferiority margin of 12% was chosen for the key secondary outcome. Safety and tolerability outcomes are presented as descriptive analyses. The efficacy analysis population contained patients who received at least one dose of medication and who had efficacy data available and had no major protocol violations. The safety population contained patients who received at least one dose of medication. This study is registered with ClinicalTrials.gov (NCT03338621) and is completed. FINDINGS: Between July 30, 2018, and March 2, 2020, 455 participants were enrolled and received at least one dose of study treatment. 324 (71%) participants were male and 131 (29%) participants were female. 303 participants with DS-TB were randomly assigned to 4 months of BPaMZ (n=150) or HRZE (n=153). In a modified intention-to-treat (mITT) analysis, by week 8, 122 (84%) of 145 and 70 (47%) of 148 participants were culture-negative on 4 months of BPaMZ and HRZE, respectively, with a hazard ratio for earlier negative status of 2·93 (95% CI 2·17-3·96; p<0·0001). Median time to negative culture (TTN) was 6 weeks (IQR 4-8) on 4 months of BPaMZ and 11 weeks (6-12) on HRZE. 86% of participants with DR-TB receiving 6 months of BPaMZ (n=152) reached culture-negative status by week 8, with a median TTN of 5 weeks (IQR 3-7). At week 52, 120 (83%) of 144, 134 (93%) of 144, and 111 (83%) of 133 on 4 months of BPaMZ, HRZE, and 6 months of BPaMZ had favourable outcomes, respectively. Despite bacteriological efficacy, 4 months of BPaMZ did not meet the non-inferiority margin for the key secondary endpoint in the pre-defined mITT population due to higher withdrawal rates for adverse hepatic events. Non-inferiority was demonstrated in the per-protocol population confirming the effect of withdrawals with 4 months of BPaMZ. At least one liver-related treatment-emergent adverse effect (TEAE) occurred among 45 (30%) participants on 4 months of BPaMZ, 38 (25%) on HRZE, and 33 (22%) on 6 months of BPaMZ. Serious liver-related TEAEs were reported by 20 participants overall; 11 (7%) among those on 4 months of BPaMZ, one (1%) on HRZE, and eight (5%) on 6 months of BPaMZ. The most common reasons for discontinuation of trial treatment were hepatotoxicity (ten participants [2%]), increased hepatic enzymes (nine participants [2%]), QTcF prolongation (three participants [1%]), and hypersensitivity (two participants [<1%]). INTERPRETATION: For DS-TB, BPaMZ successfully met the primary efficacy endpoint of sputum culture conversion. The regimen did not meet the key secondary efficacy endpoint due to adverse events resulting in treatment withdrawal. Our study demonstrated the potential for treatment-shortening efficacy of the BPaMZ regimen for DS-TB and DR-TB, providing clinical validation of a murine model widely used to identify such regimens. It also highlights that novel, treatment-shortening TB treatment regimens require an acceptable toxicity and tolerability profile with minimal monitoring in low-resource and high-burden settings. The increased risk of unpredictable severe hepatic adverse events with 4 months of BPaMZ would be a considerable obstacle to implementation of this regimen in settings with high burdens of TB with limited infrastructure for close surveillance of liver biochemistry. Future research should focus on improving the preclinical and early clinical detection and mitigation of safety issues together and further efforts to optimise shorter treatments. FUNDING: TB Alliance.