Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010411, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36112661

RESUMEN

Fecundity is arguably one of the most important life history traits, as it is closely tied to fitness. Most arthropods are recognized for their extreme reproductive capacity. For example, a single female of the oriental fruit fly Bactrocera dorsalis, a highly invasive species that is one of the most destructive agricultural pests worldwide, can lay more than 3000 eggs during its life span. The ovary is crucial for insect reproduction and its development requires further investigation at the molecular level. We report here that miR-309a is a regulator of ovarian development in B. dorsalis. Our bioinformatics and molecular studies have revealed that miR-309a binds the transcription factor pannier (GATA-binding factor A/pnr), and this activates yolk vitellogenin 2 (Vg 2) and vitellogenin receptor (VgR) advancing ovarian development. We further show that miR-309a is under the control of juvenile hormone (JH) and independent from 20-hydroxyecdysone. Thus, we identified a JH-controlled miR-309a/pnr axis that regulates Vg2 and VgR to control the ovarian development. This study has further enhanced our understanding of molecular mechanisms governing ovarian development and insect reproduction. It provides a background for identifying targets for controlling important Dipteran pests.


Asunto(s)
MicroARNs , Tephritidae , Animales , Drosophila/metabolismo , Ecdisterona/metabolismo , Femenino , Hormonas Juveniles/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Tephritidae/genética , Tephritidae/metabolismo , Factores de Transcripción/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo
2.
Arch Insect Biochem Physiol ; 115(1): e22071, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288483

RESUMEN

The single domain von Willebrand factor type C (SVWC) appears in small secreted peptides that are arthropod-specific and are produced following environmental stress or pathogen exposure. Most research has focused on proteins with SVWC domain that are induced after virus infection and are hypothesized to function as "cytokines" to regulate the innate immune response. The expansion of SVWC genes in insect species indicates that many other functions remain to be discovered. Research in shrimp has elucidated the adaptability of Vago-like peptides in the innate immune response against bacteria, fungi and viruses after activation by Jak-STAT and/or Toll/Imd pathways in which they can act as pathogen-recognition receptors or cytokine-like signaling molecules. SVWC factors also appear in scorpion venoms and tick saliva, underlining their versatility to acquire new functions. This review discusses the discovery and function of SVWC peptides from insects to crustaceans and chelicerates and reveals the enormous gaps in knowledge that remain to be filled to understand this enigmatic group of secreted peptides.


Asunto(s)
Citocinas , Factor de von Willebrand , Animales , Factor de von Willebrand/metabolismo , Insectos/metabolismo , Inmunidad Innata , Péptidos
3.
Arch Insect Biochem Physiol ; 115(4): e22114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38659314

RESUMEN

The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the yellow-y gene in one important model and pest species, namely the German cockroach (Blattella germanica), which is to our knowledge the first time reported. In essence, we identified the yellow-y gene (BgY-y) and characterized its function by using RNA interference (RNAi). Silencing of BgY-y gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of BgY-y impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the yellow-y gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.


Asunto(s)
Blattellidae , Proteínas de Insectos , Oviposición , Pigmentación , Interferencia de ARN , Animales , Blattellidae/genética , Blattellidae/fisiología , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Pigmentación/genética , Cortejo , Melaninas/metabolismo , Conducta Sexual Animal
4.
Cell Mol Biol Lett ; 29(1): 42, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539075

RESUMEN

Elucidating the intricate interactions between viral pathogens and host cellular machinery during infection is paramount for understanding pathogenic mechanisms and identifying potential therapeutic targets. The RNA modification N6-methyladenosine (m6A) has emerged as a significant factor influencing the trajectory of viral infections. Hence, the precise and quantitative mapping of m6A modifications in both host and viral RNA is pivotal to understanding its role during viral infection. With the rapid advancement of sequencing technologies, scientists are able to detect m6A modifications with various quantitative, high-resolution, transcriptome approaches. These technological strides have reignited research interest in m6A, underscoring its significance and prompting a deeper investigation into its dynamics during viral infections. This review provides a comprehensive overview of the historical evolution of m6A epitranscriptome sequencing technologies, highlights the latest developments in transcriptome-wide m6A mapping, and emphasizes the innovative technologies for detecting m6A modification. We further discuss the implications of these technologies for future research into the role of m6A in viral infections.


Asunto(s)
Adenosina/análogos & derivados , ARN , Virosis , Humanos , ARN/genética , Transcriptoma
5.
Chem Biodivers ; 21(4): e202301758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38241641

RESUMEN

Propolis was collected from honeybee hives in three geographically distinct Algerian climates and extracts were characterized for composition and bioactivity. Bees were identified as native subspecies using an in-silico DraI mtDNA COI-COII test. Over 20 compounds were identified in extracts by LC-MS. Extracts from the Medea region were more enriched in phenolic content (302±28 mg GAE/g of dry extract) than those from Annaba and Ghardaia regions. Annaba extracts had the highest flavonoid content (1870±385 mg QCE/g of dry extract). Medea extracts presented the highest free-radical scavenging activity (IC50=13.5 µg/mL) using the DPPH radical assay while Ghardaia extracts from the desert region were weak (IC50>100 µg/mL). Antioxidant activities measured using AAPH oxidation of linoleic acid were similar in all extracts with IC50 values ranging from 2.9 to 4.9 µg/mL. All extracts were cytotoxic (MTT assay) and proapoptotic (Annexin-V) against human leukemia cell lines in the low µg/mL range, although the Annaba extract was less active against the Reh cell line. Extracts inhibited cellular 5-lipoxygenase product biosynthesis with IC50 values ranging from 0.6 to 3.2 µg/mL. Overall, examined propolis extracts exhibited significant biological activity that warrant further characterization in cellular and in vivo models.


Asunto(s)
Antioxidantes , Própolis , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Própolis/farmacología , Própolis/química , Araquidonato 5-Lipooxigenasa , Extractos Vegetales/química , Fenoles/farmacología , Flavonoides/farmacología
6.
Appl Environ Microbiol ; 89(11): e0095023, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37882529

RESUMEN

IMPORTANCE: Plant protection products are essential for ensuring food production, but their use poses a threat to human and environmental health, and their efficacy is decreasing due to the acquisition of resistance by pathogens. Stricter regulations and consumer demand for cleaner produce are driving the search for safer and more sustainable alternatives. Microbial biocontrol agents, such as microorganisms with antifungal activity, have emerged as a promising alternative management strategy, but their commercial use has been limited by poor establishment and spread on crops. This study presents a novel system to overcome these challenges. The biocontrol agent Lactiplantibacillus plantarum AMBP214 was spray-dried and successfully dispersed to strawberry flowers via bumblebees. This is the first report of combining spray-dried, non-spore-forming bacteria with pollinator-dispersal, which scored better than the state-of-the-art in terms of dispersal to the plant (CFU/flower), and resuscitation of the biocontrol agent. Therefore, this new entomovectoring system holds great promise for the use of biocontrol agents for disease management in agriculture.


Asunto(s)
Fragaria , Control Biológico de Vectores , Animales , Abejas , Humanos , Productos Agrícolas , Fragaria/microbiología
7.
Insect Mol Biol ; 32(5): 544-557, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37191302

RESUMEN

The present study aimed to characterise the bacterial, fungal and parasite gut community of the invasive bee Megachile sculpturalis sampled from native (Japan) and invaded (USA and France) regions via 16S rRNA and ITS2 amplicon sequencing and PCR detection of bee microparasites. The bacterial and fungal gut microbiota communities in bees from invaded regions were highly similar and differed strongly from those obtained in Japan. Core amplicon sequence variants (ASVs) within each population represented environmental micro-organisms commonly present in bee-associated niches that likely provide beneficial functions to their host. Although the overall bacterial and fungal communities of the invasive M. sculpturalis in France and the co-foraging native bees Anthidium florentinum and Halictus scabiosae, were significantly different, five out of eight core ASVs were shared suggesting common environmental sources and potential transmission. None of the 46 M. sculpturalis bees analysed harboured known bee pathogens, while microparasite infections were common in A. florentinum, and rare in H. scabiosae. A common shift in the gut microbiota of M. sculpturalis in invaded regions as a response to changed environmental conditions, or a founder effect coupled to population re-establishment in the invaded regions may explain the observed microbial community profiles and the absence of parasites. While the role of pathogen pressure in shaping biological invasions is still debated, the absence of natural enemies may contribute to the invasion success of M. sculpturalis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Abejas/genética , Animales , ARN Ribosómico 16S/genética , Bacterias/genética
8.
Insect Mol Biol ; 32(5): 510-527, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37204105

RESUMEN

We provide a culturomics analysis of the cultivable bacterial communities of the crop, midgut and hindgut compartments, as well as the ovaries, of the invasive insect Vespa velutina, along with a cultivation-independent analysis of samples of the same nest through 16S rRNA amplicon sequencing. The Vespa velutina bacterial symbiont community was dominated by the genera Convivina, Fructobacillus, Lactiplantibacillus, Lactococcus, Sphingomonas and Spiroplasma. Lactococcus lactis and Lactiplantibacillus plantarum represented generalist core lactic acid bacteria (LAB) symbionts, while Convivina species and Fructobacillus fructosus represented highly specialised core LAB symbionts with strongly reduced genome sizes. Sphingomonas and Spiroplasma were the only non-LAB core symbionts but were not isolated. Convivina bacteria were particularly enriched in the hornet crop and included Convivina intestini, a species adapted towards amino acid metabolism, and Convivina praedatoris sp. nov. which was adapted towards carbohydrate metabolism.


Asunto(s)
Avispas , Animales , Avispas/genética , ARN Ribosómico 16S/genética , Bacterias/genética
9.
Glycoconj J ; 40(1): 85-95, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36287345

RESUMEN

The Dalbergieae lectin group encompasses several lectins with significant differences in their carbohydrate specificities and biological properties. The current work reports on the purification and characterization of a GalNAc/Gal-specific lectin from Vataireopsis araroba (Aguiar) Ducke, designated as VaL. The lectin was purified from the seeds in a single step using guar gum affinity chromatography. The lectin migrated as a single band of about 35 kDa on SDS-PAGE and, in native conditions, occurs as a homodimer. The purified lectin is stable at temperatures up to 60 °C and in a pH range from 7 to 8 and requires divalent cations for its activity. Sugar-inhibition assays demonstrate the lectin specificity towards N-acetyl-D-galactosamine, D-galactose and related sugars. Furthermore, glycan array analyses show that VaL interacts preferentially with glycans containing terminal GalNAc/Galß1-4GlcNAc. Biological activity assays were performed using three insect cell lines: CF1 midgut cells from the spruce budworm Choristoneura fumiferana, S2 embryo cells from the fruit fly Drosophila melanogaster, and GutAW midgut cells from the corn earworm Helicoverpa zea. In vitro assays indicated a biostatic effect for VaL on CF1 cells, but not on S2 and GutAW cells. The lectin presented a biostatic effect by reducing the cell growth and inducing cell agglutination, suggesting an interaction with glycans on the cell surface. VaL has been characterized as a galactoside-specific lectin of the Dalbergieae tribe, with sequence similarity to lectins from Vatairea and Arachis.


Asunto(s)
Fabaceae , Lectinas , Animales , Lectinas/metabolismo , Fabaceae/química , Fabaceae/metabolismo , Drosophila melanogaster , Carbohidratos/análisis , Semillas/química , Polisacáridos/metabolismo , Galactósidos/análisis , Galactósidos/metabolismo , Lectinas de Plantas/química
10.
Microb Ecol ; 86(4): 3013-3026, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37794084

RESUMEN

We characterized the microbial communities of the crop, midgut, hindgut, and ovaries of the wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta through 16S rRNA gene and ITS2 amplicon sequencing and a large-scale isolation campaign. The bacterial communities of these bees were dominated by endosymbionts of the genera Wolbachia and Spiroplasma. Bacterial and yeast genera representing the remaining predominant taxa were linked to an environmental origin. While only a single sampling site was examined for Andrena vaga, Anthophora plumipes, and Colletes cunicularius, and two sampling sites for Osmia cornuta, the microbiota appeared to be host specific: bacterial, but not fungal, communities generally differed between the analyzed bee species, gut compartments and ovaries. This may suggest a selective process determined by floral and host traits. Many of the gut symbionts identified in the present study are characterized by metabolic versatility. Whether they exert similar functionalities within the bee gut and thus functional redundancy remains to be elucidated.


Asunto(s)
Microbiota , Micobioma , Spiroplasma , Abejas , Animales , ARN Ribosómico 16S/genética , Bacterias
11.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834248

RESUMEN

In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.


Asunto(s)
Oviposición , Tetranychidae , Animales , Femenino , Ecdisteroides/genética , Reproducción/genética , Interferencia de ARN
12.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569502

RESUMEN

The burrowing nematode Radopholus similis is considered a major problem of intensive banana cultivation. It can cause extensive root damage resulting in the toppling disease of banana, which means that plants fall to the ground. Soaking R. similis in double-stranded (ds) RNA of the nematode genes Rps13, chitin synthase (Chs-2), Unc-87, Pat-10 or beta-1,4-endoglucanase (Eng1a) suppressed reproduction on carrot discs, from 2.8-fold (Chs-2) to 7-fold (Rps13). The East African Highland Banana cultivar Nakitembe was then transformed with constructs for expression of dsRNA against the same genes, and for each construct, 30 independent transformants were tested with nematode infection. Four months after transfer from in vitro culture to the greenhouse, the banana plants were transferred to a screenhouse and inoculated with 2000 nematodes per plant, and thirteen weeks later, they were analyzed for several parameters including plant growth, root necrosis and final nematode population. Plants with dsRNA constructs against the nematode genes were on average showing lower nematode multiplication and root damage than the nontransformed controls or the banana plants expressing dsRNA against the nonendogenous gene. In conclusion, RNAi seems to efficiently protect banana against damage caused by R. similis, opening perspectives to control this pest.

13.
Virol J ; 19(1): 12, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033134

RESUMEN

In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.


Asunto(s)
Virus ARN , Varroidae , Animales , Abejas , Virus ADN , Egipto , Virus ARN/genética
14.
Crit Rev Food Sci Nutr ; 62(31): 8535-8566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34098806

RESUMEN

Flavonoid consumption has beneficial effects on human health, however, clinical evidence remains often inconclusive due to high interindividual variability. Although this high interindividual variability has been consistently observed in flavonoid research, the potential underlying reasons are still poorly studied. Especially the knowledge on the impact of health status on flavonoid responsiveness is limited and merits more investigation. Here, we aim to highlight the bidirectional interplay between flavonoids and cellular stress. First, the state-of-the-art concerning inflammatory stress and mitochondrial dysfunction is reviewed and a comprehensive overview of recent in vitro studies investigating the impact of flavonoids on cellular stress, induced by tumor necrosis factor α, lipopolysaccharide and mitochondrial stressors, is given. Second, we critically discuss the influence of cellular stress on flavonoid uptake, accumulation, metabolism and cell responses, which has, to our knowledge, never been extensively reviewed before. Next, we advocate the innovative insight that stratification of the general population based on health status can reveal subpopulations that benefit more from flavonoid consumption. Finally, suggestions are given for the development of future cell models that simulate the physiological micro-environment, including interindividual variability, since more mechanistic research is needed to establish scientific-based personalized food recommendations for specific subpopulations.


Asunto(s)
Flavonoides , Alimentos , Humanos , Flavonoides/farmacología , Flavonoides/metabolismo , Lipopolisacáridos , Factor de Necrosis Tumoral alfa
15.
Ecol Appl ; 32(5): e2605, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35365918

RESUMEN

Wild bees are key providers of pollination services in agroecosystems. The abundance of these pollinators and the ecosystem services they provide rely on supporting resources in the landscape. Spatially explicit models that quantify wild bee abundance and pollination services in food crops are built on the foundations of foraging and nesting resources. This dependence limits model implementation as land-cover maps and pollination experts capable of evaluating habitat resource quality are scarce. This study presents a novel approach to assessing crop pollination services using remote sensing data (RSD) as an alternative to the more conventional use of land-cover data and local expertise on spatially explicit models. We used landscape characteristics derived from remote sensors to qualify nesting resources in the landscape and to evaluate the delivery of pollination services by mining bees (Andrena spp.) in 30 fruit orchards located in the Flemish region of Belgium. For this study, we selected mining bees for their importance as local pollinators and underground nesting behavior. We compared the estimated pollination services derived from RSD with those derived from the conventional qualification of nesting resources. We did not observe significant differences (p = 0.68) in the variation in mining bee activity predicted by the two spatial models. Estimated pollination services derived from RSD and conventional characterizations explained 69% and 72% of the total variation, respectively. These results confirmed that RSD can deliver nesting suitability characterizations sufficient for estimating pollination services. This research also illustrates the importance of nesting resources and landscape characteristics when estimating pollination services delivered by insects like mining bees. Our results support the development of holistic agroenvironmental policies that rely on modern tools like remote sensors and promote pollinators by considering nesting resources.


Asunto(s)
Ecosistema , Polinización , Animales , Abejas , Bélgica , Productos Agrícolas , Tecnología de Sensores Remotos
16.
Arch Insect Biochem Physiol ; 109(1): e21852, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34796531

RESUMEN

Eukaryotic cells can decorate their proteins with carbohydrate structures or glycans, significantly affecting the properties and activities of these proteins. Despite the importance of protein glycosylation in numerous biological processes, our knowledge of this modification in insects is far from complete. While N-glycosylation is the most studied, the study of O-glycans in insects is still very fragmentary and these studies are limited to a specific developmental stage or a specific tissue. In this article, matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) technology was used to analyze the O-glycan profile for the different developmental stages of egg, larva, pupa, and adult of the red flour beetle Tribolium castaneum, an important insect model and pest worldwide. The results on the O-glycan profile showed that the mucin-type glycans dominate the O-glycome of the red flour beetle. Interestingly, some of the more complex mucin-type O-glycans, such as a tetra- (O-GalNAcGalGlcAGalNAc) and pentasaccharide O-glycan (O-GalNAc(GalGlcA)GalNAcGlcA), were highly abundant during the pupa stage, the intermediate stage between larval and adult stage in holometabolous insects, demonstrating that insect metamorphosis is accompanied with a change in the insect O-glycan profile. Together with the N-glycan profile, the current data are a foundation to better understand the role of protein glycosylation in the development of insects.


Asunto(s)
Proteínas de Insectos/metabolismo , Polisacáridos/metabolismo , Tribolium/crecimiento & desarrollo , Tribolium/metabolismo , Animales , Glicosilación , Estadios del Ciclo de Vida , Metamorfosis Biológica/fisiología , Mucinas/metabolismo , Polisacáridos/química
17.
Mol Cell Proteomics ; 19(3): 529-539, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31924694

RESUMEN

Glycosylation is a common modification of proteins and critical for a wide range of biological processes. Differences in protein glycosylation between sexes have already been observed in humans, nematodes and trematodes, and have recently also been reported in the rice pest insect Nilaparvata lugens Although protein N-glycosylation in insects is nowadays of high interest because of its potential for exploitation in pest control strategies, the functionality of differential N-glycosylation between sexes is yet unknown. In this study, therefore, the occurrence and role of sex-related protein N-glycosylation in insects were examined. A comprehensive investigation of the N-glycosylation sites from the adult stages of N. lugens was conducted, allowing a qualitative and quantitative comparison between sexes at the glycopeptide level. N-glycopeptide enrichment via lectin capturing using the high mannose/paucimannose-binding lectin Concanavalin A, or the Rhizoctonia solani agglutinin which interacts with complex N-glycans, resulted in the identification of over 1300 N-glycosylation sites derived from over 600 glycoproteins. Comparison of these N-glycopeptides revealed striking differences in protein N-glycosylation between sexes. Male- and female-specific N-glycosylation sites were identified, and some of these sex-specific N-glycosylation sites were shown to be derived from proteins with a putative role in insect reproduction. In addition, differential glycan composition between males and females was observed for proteins shared across sexes. Both lectin blotting experiments as well as transcript expression analyses with complete insects and insect tissues confirmed the observed differences in N-glycosylation of proteins between sexes. In conclusion, this study provides further evidence for protein N-glycosylation to be sex-related in insects. Furthermore, original data on N-glycosylation sites of N. lugens adults are presented, providing novel insights into planthopper's biology and information for future biological pest control strategies.


Asunto(s)
Glicopéptidos/metabolismo , Hemípteros/metabolismo , Proteínas de Insectos/metabolismo , Caracteres Sexuales , Animales , Femenino , Tracto Gastrointestinal/metabolismo , Glicosilación , Cabeza , Masculino , Ovario/metabolismo , Reproducción , Testículo/metabolismo
18.
Glob Chang Biol ; 27(18): 4223-4237, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34118096

RESUMEN

Bumblebees are ubiquitous, cold-adapted eusocial bees found worldwide from subarctic to tropical regions of the world. They are key pollinators in most temperate and boreal ecosystems, and both wild and managed populations are significant contributors to agricultural pollination services. Despite their broad ecological niche at the genus level, bumblebee species are threatened by climate change, particularly by rising average temperatures, intensifying seasonality and the increasing frequency of extreme weather events. While some temperature extremes may be offset at the individual or colony level through temperature regulation, most bumblebees are expected to exhibit specific plastic responses, selection in various key traits, and/or range contractions under even the mildest climate change. In this review, we provide an in-depth and up-to-date review on the various ways by which bumblebees overcome the threats associated with current and future global change. We use examples relevant to the fields of bumblebee physiology, morphology, behaviour, phenology, and dispersal to illustrate and discuss the contours of this new theoretical framework. Furthermore, we speculate on the extent to which adaptive responses to climate change may be influenced by bumblebees' capacity to disperse and track suitable climate conditions. Closing the knowledge gap and improving our understanding of bumblebees' adaptability or avoidance behaviour to different climatic circumstances will be necessary to improve current species climate response models. These models are essential to make correct predictions of species vulnerability in the face of future climate change and human-induced environmental changes to unfold appropriate future conservation strategies.


Asunto(s)
Cambio Climático , Ecosistema , Agricultura , Animales , Abejas , Polinización , Temperatura
19.
Arch Insect Biochem Physiol ; 106(1): e21740, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33020953

RESUMEN

Neuropeptides control many physiological and behavioral processes, and so they are functionally important classes of cell-to-cell signaling molecules. Nowadays, the fall armyworm, Spodoptera frugiperda, is one of the most destructive agricultural pests in the world. In this study, we mined the publicly accessible genome assembly data for S. frugiperda, and the transcriptomic and proteomic data of the larval central nervous system (CNS) for putative neuropeptide-encoding, and subsequently we used these to anticipate a peptidome for this species. In essence, we could identify 57 orthologs of insect neuropeptides, including Allatotropin, CCHamide, Corazonin, pheromone biosynthesis activating neuropeptide, short neuropeptide F, Trissin, and Natalisin. Interesting features for S. frugiperda were the absence of genes coding for CNMamide, Elevein, and the differential evolution of ancestral neuropeptide genes such as adipokinetic corazonin-related peptide, adipokinetic hormone, Tachykinin, and Natalisin. In conclusion, our study provides the most complete neuropeptide description for the important pest S. frugiperda as a foundation to study the factors regulating insect growth, reproduction, and behavior. Second, we confirm that a comprehensive multi-omics analysis is necessary for the identification of neuropeptides. Finally, our data provide a reliable reference for other comparative studies in other insects beyond the supermodel insect of Drosophila melanogaster and the finding of potential candidates as selective for pests versus beneficial insects.


Asunto(s)
Neuropéptidos/genética , Spodoptera/genética , Animales , Biología Computacional , Genoma , Insectos , Proteoma , Transcriptoma
20.
J Invertebr Pathol ; 182: 107583, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33781766

RESUMEN

The use of commercially reared bumble bees in agricultural environments has been recognized as a potential threat to wild pollinators due to competition, genetic contamination, and most notably, disease transmission. Higher parasite prevalence near greenhouses where managed bumble bees are used has been linked to parasite spillover from managed to wild bees. However, pathogen transmission is not unidirectional, and can also flow from wild to managed bees. These newly infected managed bees can subsequently re-infect (other) wild bees, in a process known as spillback, which is an alternative explanation for the increased parasite prevalence near greenhouses. Reducing parasite prevalence in managed bees is key to controlling host-parasite dynamics in cases of spillover; in spillback, producing managed bees that are resilient to infection is important. Here we establish that the managed bumble bee Bombus terrestris can acquire parasites from their foraging environment, which is the major infection route for Apicystis spp. and Crithidia spp., but not for Nosema spp.. Managed B. terrestris were found to have a higher prevalence of Crithdia and a higher load of Apicystis than local wild conspecifics, showing that for these parasites, spillback is a possible risk scenario.


Asunto(s)
Apicomplexa/fisiología , Abejas/microbiología , Abejas/parasitología , Crithidia/fisiología , Interacciones Huésped-Parásitos , Nosema/fisiología , Animales , Apicultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA