Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(4): 2767-2845, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326298

RESUMEN

Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.


Asunto(s)
Calcio , Corazón , Humanos , Calcio/metabolismo , Tampones (Química) , Citoplasma/metabolismo , Transmisión Sináptica , Señalización del Calcio/fisiología
2.
Proc Natl Acad Sci U S A ; 120(7): e2207887120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745790

RESUMEN

Mammalian voltage-activated L-type Ca2+ channels, such as Ca(v)1.2, control transmembrane Ca2+ fluxes in numerous excitable tissues. Here, we report that the pore-forming α1C subunit of Ca(v)1.2 is reversibly palmitoylated in rat, rabbit, and human ventricular myocytes. We map the palmitoylation sites to two regions of the channel: The N terminus and the linker between domains I and II. Whole-cell voltage clamping revealed a rightward shift of the Ca(v)1.2 current-voltage relationship when α1C was not palmitoylated. To examine function, we expressed dihydropyridine-resistant α1C in human induced pluripotent stem cell-derived cardiomyocytes and measured Ca2+ transients in the presence of nifedipine to block the endogenous channels. The transients generated by unpalmitoylatable channels displayed a similar activation time course but significantly reduced amplitude compared to those generated by wild-type channels. We thus conclude that palmitoylation controls the voltage sensitivity of Ca(v)1.2. Given that the identified Ca(v)1.2 palmitoylation sites are also conserved in most Ca(v)1 isoforms, we propose that palmitoylation of the pore-forming α1C subunit provides a means to regulate the voltage sensitivity of voltage-activated Ca2+ channels in excitable cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Ratas , Humanos , Conejos , Animales , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Lipoilación , Canales de Calcio Tipo L/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Calcio de la Dieta , Mamíferos/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 326(3): H735-H751, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180449

RESUMEN

Arrhythmic sudden cardiac death (SCD) is an important cause of mortality following myocardial infarction (MI). The rabbit has similar cardiac electrophysiology to humans and is therefore an important small animal model to study post-MI arrhythmias. The established approach of surgical coronary ligation results in thoracic adhesions that impede epicardial electrophysiological studies. Adhesions are absent following a percutaneously induced MI, which is also associated with reduced surgical morbidity and so represents a clear refinement of the approach. Percutaneous procedures have previously been described in large rabbits (3.5-5.5 kg). Here, we describe a novel method of percutaneous MI induction in smaller rabbits (2.5-3.5 kg) that are readily available commercially. New Zealand White rabbits (n = 51 males, 3.1 ± 0.3 kg) were anesthetized using isoflurane (1.5-3%) and underwent either a percutaneous MI procedure involving microcatheter tip deployment (≤1.5 Fr, 5 mm), coronary ligation surgery, or a sham procedure. Electrocardiography (ECG) recordings were used to confirm ST-segment elevation indicating coronary occlusion. Blood samples (1 and 24 h) were taken for cardiac troponin I (cTnI) levels. Ejection fraction (EF) was measured at 6-8 wk. Rabbits were then euthanized (Euthatal) and hearts were processed for magnetic resonance imaging and histology. Mortality rates were similar in both groups. Scar volume, cTnI, and EF were similar between both MI groups and significantly different from their respective sham controls. Thus, percutaneous coronary occlusion by microcatheter tip deployment is feasible in rabbits (2.5-3.5 kg) and produces an MI with similar characteristics to surgical ligation with lower procedural trauma and without epicardial adhesions.NEW & NOTEWORTHY Surgical coronary ligation is the standard technique to induce myocardial infarction (MI) in rabbits but is associated with procedural trauma and the generation of thoracic adhesions. Percutaneous coronary occlusion avoids these shortcomings and is established in pigs but has only been applicable to large rabbits because of a mismatch between the equipment used and target vessel size. Here, we describe a new scalable approach to percutaneous MI induction that is safe and effective in 2.5-3.5-kg rabbits.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Oclusión Coronaria , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Masculino , Conejos , Animales , Porcinos , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/cirugía , Vasos Coronarios/patología , Infarto del Miocardio/patología , Corazón , Oclusión Coronaria/complicaciones , Oclusión Coronaria/diagnóstico por imagen , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Arritmias Cardíacas/complicaciones , Intervención Coronaria Percutánea/efectos adversos
4.
Am J Physiol Heart Circ Physiol ; 326(1): H203-H215, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37975708

RESUMEN

Ventricular arrhythmias contribute significantly to cardiovascular mortality, with coronary artery disease as the predominant underlying cause. Understanding the mechanisms of arrhythmogenesis is essential to identify proarrhythmic factors and develop novel approaches for antiarrhythmic prophylaxis and treatment. Animal models are vital in basic research on cardiac arrhythmias, encompassing molecular, cellular, ex vivo whole heart, and in vivo models. Most studies use either in vivo protocols lacking important information on clinical relevance or exclusively ex vivo protocols, thereby missing the opportunity to explore underlying mechanisms. Consequently, interpretation may be difficult due to dissimilarities in animal models, interventions, and individual properties across animals. Moreover, proarrhythmic effects observed in vivo are often not replicated in corresponding ex vivo preparations during mechanistic studies. We have established a protocol to perform both an in vivo and ex vivo electrophysiological characterization in an arrhythmogenic rat model with heart failure following myocardial infarction. The same animal is followed throughout the experiment. In vivo methods involve intracardiac programmed electrical stimulation and external defibrillation to terminate sustained ventricular arrhythmia. Ex vivo methods conducted on the Langendorff-perfused heart include an electrophysiological study with optical mapping of regional action potentials, conduction velocities, and dispersion of electrophysiological properties. By exploring the retention of the in vivo proarrhythmic phenotype ex vivo, we aim to examine whether the subsequent ex vivo detailed measurements are relevant to in vivo pathological behavior. This protocol can enhance greater understanding of cardiac arrhythmias by providing a standardized, yet adaptable model for evaluating arrhythmogenicity or antiarrhythmic interventions in cardiac diseases.NEW & NOTEWORTHY Rodent models are widely used in arrhythmia research. However, most studies do not standardize clinically relevant in vivo and ex vivo techniques to support their conclusions. Here, we present a comprehensive electrophysiological protocol in an arrhythmogenic rat model, connecting in vivo and ex vivo programmed electrical stimulation with optical mapping. By establishing this protocol, we aim to facilitate the adoption of a standardized model for investigating arrhythmias, enhancing research rigor and comparability in this field.


Asunto(s)
Arritmias Cardíacas , Infarto del Miocardio , Ratas , Animales , Corazón/fisiología , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Modelos Animales
5.
J Mol Cell Cardiol ; 183: 70-80, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37704101

RESUMEN

BACKGROUND: The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM: To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS: Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS: In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 µM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 µM ICAGEN (at [Ca2+]i âˆ¼ 100-450 nM), nor 100 nM apamin ([Ca2+]i âˆ¼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 µM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 µM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 µM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION: ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.


Asunto(s)
Fibrilación Atrial , Miocitos Cardíacos , Animales , Humanos , Conejos , Miocitos Cardíacos/efectos de los fármacos , Apamina/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Atrios Cardíacos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos
6.
Annu Rev Pharmacol Toxicol ; 60: 529-551, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31506008

RESUMEN

In recent decades, drug development costs have increased by approximately a hundredfold, and yet about 1 in 7 licensed drugs are withdrawn from the market, often due to cardiotoxicity. This review considers whether technologies using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could complement existing assays to improve discovery and safety while reducing socioeconomic costs and assisting with regulatory guidelines on cardiac safety assessments. We draw on lessons from our own work to suggest a panel of 12 drugs that will be useful in testing the suitability of hiPSC-CM platforms to evaluate contractility. We review issues, including maturity versus complexity, consistency, quality, and cost, while considering a potential need to incorporate auxiliary approaches to compensate for limitations in hiPSC-CM technology. We give examples on how coupling hiPSC-CM technologies with Cas9/CRISPR genome engineering is starting to be used to personalize diagnosis, stratify risk, provide mechanistic insights, and identify new pathogenic variants for cardiovascular disease.


Asunto(s)
Cardiotoxicidad/prevención & control , Descubrimiento de Drogas/métodos , Miocitos Cardíacos/efectos de los fármacos , Animales , Sistemas CRISPR-Cas/genética , Desarrollo de Medicamentos/métodos , Ingeniería Genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Medicina de Precisión/métodos
7.
Cell Biochem Funct ; 41(8): 1147-1161, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37665041

RESUMEN

Cardiac cellular responses to acute exercise remain undescribed. We present a model for mimicking acute aerobic endurance exercise to freshly isolated cardiomyocytes by evoking exercise-like contractions over prolonged periods of time with trains of electrical twitch stimulations. We then investigated immediate contractile, Ca2+ , and metabolic responses to acute exercise in perfused freshly isolated left ventricular rat cardiomyocytes, after a matrix-design optimized protocol and induced a mimic for acute aerobic endurance exercise by trains of prolonged field twitch stimulations. Acute exercise decreased cardiomyocyte fractional shortening 50%-80% (p < .01). This was not explained by changes to intracellular Ca2+ handling (p > .05); rather, we observed a weak insignificant Ca2+ transient increase (p = .11), while myofilament Ca2+ sensitivity increased 20%-70% (p < .05). Acidic pH 6.8 decreased fractional shortening 20%-70% (p < .05) because of 20%-30% decreased Ca2+ transients (p < .05), but no difference occurred between control and acute exercise (p > .05). Addition of 1 or 10 mM La- increased fractional shortening in control (1 mM La- : no difference, p > .05; 10 mM La- : 20%-30%, p < .05) and acute exercise (1 mM La- : 40%-90%, p < .01; 10 mM La- : 50%-100%, p < .01) and rendered acute exercise indifferent from control (p > .05). Intrinsic autofluorescence showed a resting NADstate of 0.59 ± 0.04 and FADstate of 0.17 ± 0.03, while acute exercise decreased NADH/FAD ratio 8% (p < .01), indicating intracellular oxidation. In conclusion, we show a novel approach for studying immediate acute cardiomyocyte responses to aerobic endurance exercise. We find that acute exercise in cardiomyocytes decreases contraction, but Ca2+ handling and myofilament Ca2+ sensitivity compensate for this, while acidosis and reduced energy substrate and mitochondrial ATP generation explain this.


Asunto(s)
Calcio , Miofibrillas , Ratas , Animales , Miofibrillas/metabolismo , Calcio/metabolismo , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Ejercicio Físico
8.
J Mol Cell Cardiol ; 165: 86-102, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34999055

RESUMEN

Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Animales , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ratones , Hidrolasas Diéster Fosfóricas/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal
9.
J Physiol ; 600(3): 483-507, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761809

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in monolayers interact mechanically via cell-cell and cell-substrate adhesion. Spatiotemporal features of contraction were analysed in hiPSC-CM monolayers (1) attached to glass or plastic (Young's modulus (E) >1 GPa), (2) detached (substrate-free) and (3) attached to a flexible collagen hydrogel (E = 22 kPa). The effects of isoprenaline on contraction were compared between rigid and flexible substrates. To clarify the underlying mechanisms, further gene expression and computational studies were performed. HiPSC-CM monolayers exhibited multiphasic contractile profiles on rigid surfaces in contrast to hydrogels, substrate-free cultures or single cells where only simple twitch-like time-courses were observed. Isoprenaline did not change the contraction profile on either surface, but its lusitropic and chronotropic effects were greater in hydrogel compared with glass. There was no significant difference between stiff and flexible substrates in regard to expression of the stress-activated genes NPPA and NPPB. A computational model of cell clusters demonstrated similar complex contractile interactions on stiff substrates as a consequence of cell-to-cell functional heterogeneity. Rigid biomaterial surfaces give rise to unphysiological, multiphasic contractions in hiPSC-CM monolayers. Flexible substrates are necessary for normal twitch-like contractility kinetics and interpretation of inotropic interventions. KEY POINTS: Spatiotemporal contractility analysis of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers seeded on conventional, rigid surfaces (glass or plastic) revealed the presence of multiphasic contraction patterns across the monolayer with a high variability, despite action potentials recorded in the same areas being identical. These multiphasic patterns are not present in single cells, in detached monolayers or in monolayers seeded on soft substrates such as a hydrogel, where only 'twitch'-like transients are observed. HiPSC-CM monolayers that display a high percentage of regions with multiphasic contraction have significantly increased contractile duration and a decreased lusotropic drug response. There is no indication that the multiphasic contraction patterns are associated with significant activation of the stress-activated NPPA or NPPB signalling pathways. A computational model of cell clusters supports the biological findings that the rigid surface and the differential cell-substrate adhesion underly multiphasic contractile behaviour of hiPSC-CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción , Adhesión Celular , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Contracción Miocárdica , Miocitos Cardíacos/metabolismo
10.
Pflugers Arch ; 474(12): 1311-1321, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36131146

RESUMEN

Atrial fibrillation (AF) from elevated adrenergic activity may involve increased atrial L-type Ca2+ current (ICaL) by noradrenaline (NA). However, the contribution of the adrenoceptor (AR) sub-types to such ICaL-increase is poorly understood, particularly in human. We therefore investigated effects of various broad-action and sub-type-specific α- and ß-AR antagonists on NA-stimulated atrial ICaL. ICaL was recorded by whole-cell-patch clamp at 37 °C in myocytes isolated enzymatically from atrial tissues from consenting patients undergoing elective cardiac surgery and from rabbits. NA markedly increased human atrial ICaL, maximally by ~ 2.5-fold, with EC75 310 nM. Propranolol (ß1 + ß2-AR antagonist, 0.2 microM) substantially decreased NA (310 nM)-stimulated ICaL, in human and rabbit. Phentolamine (α1 + α2-AR antagonist, 1 microM) also decreased NA-stimulated ICaL. CGP20712A (ß1-AR antagonist, 0.3 microM) and prazosin (α1-AR antagonist, 0.5 microM) each decreased NA-stimulated ICaL in both species. ICI118551 (ß2-AR antagonist, 0.1 microM), in the presence of NA + CGP20712A, had no significant effect on ICaL in human atrial myocytes, but increased it in rabbit. Yohimbine (α2-AR antagonist, 10 microM), with NA + prazosin, had no significant effect on human or rabbit ICaL. Stimulation of atrial ICaL by NA is mediated, based on AR sub-type antagonist responses, mainly by activating ß1- and α1-ARs in both human and rabbit, with a ß2-inhibitory contribution evident in rabbit, and negligible α2 involvement in either species. This improved understanding of AR sub-type contributions to noradrenergic activation of atrial ICaL could help inform future potential optimisation of pharmacological AR-antagonism strategies for inhibiting adrenergic AF.


Asunto(s)
Canales de Calcio Tipo L , Miocitos Cardíacos , Norepinefrina , Receptores Adrenérgicos alfa , Receptores Adrenérgicos beta , Animales , Humanos , Conejos , Fibrilación Atrial/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Norepinefrina/farmacología , Norepinefrina/fisiología , Prazosina/farmacología , Receptores Adrenérgicos alfa 2 , Atrios Cardíacos/citología , Receptores Adrenérgicos beta/fisiología , Receptores Adrenérgicos alfa/fisiología , Antagonistas Adrenérgicos alfa/farmacología , Antagonistas Adrenérgicos beta/farmacología , Canales de Calcio Tipo L/fisiología
11.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682699

RESUMEN

Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (Ito). In vitro, incubation with metformin for 24 h also reduced Ito, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced IhERG in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of Ito and IhERG. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Metformina , Potenciales de Acción , Animales , Arritmias Cardíacas/tratamiento farmacológico , Células HEK293 , Humanos , Metformina/farmacología , Miocitos Cardíacos , Potasio/farmacología , Ratas
12.
J Cardiovasc Pharmacol ; 77(3): 280-290, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33109927

RESUMEN

ABSTRACT: Because cardiotoxicity is one of the leading causes of drug failure and attrition, the design of new protocols and technologies to assess proarrhythmic risks on cardiac cells is in continuous development by different laboratories. Current methodologies use electrical, intracellular Ca2+, or contractility assays to evaluate cardiotoxicity. Increasingly, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are the in vitro tissue model used in commercial assays because it is believed to recapitulate many aspects of human cardiac physiology. In this work, we demonstrate that the combination of a contractility and voltage measurements, using video-based imaging and fluorescence microscopy, on hiPSC-CMs allows the investigation of mechanistic links between electrical and mechanical effects in an assay design that can address medium throughput scales necessary for drug screening, offering a view of the mechanisms underlying drug toxicity. To assess the accuracy of this novel technique, 10 commercially available inotropic drugs were tested (5 positive and 5 negative). Included were drugs with simple and specific mechanisms, such as nifedipine, Bay K8644, and blebbistatin, and others with a more complex action such as isoproterenol, pimobendan, digoxin, and amrinone, among others. In addition, the results provide a mechanism for the toxicity of itraconazole in a human model, a drug with reported side effects on the heart. The data demonstrate a strong negative inotropic effect because of the blockade of L-type Ca2+ channels and additional action on the cardiac myofilaments. We can conclude that the combination of contractility and action potential measurements can provide wider mechanistic knowledge of drug cardiotoxicity for preclinical assays.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Acoplamiento Excitación-Contracción/efectos de los fármacos , Colorantes Fluorescentes/química , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Microscopía Fluorescente , Microscopía por Video , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Compuestos de Piridinio/química , Potenciales de Acción/efectos de los fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Cardiotoxicidad , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/patología , Medición de Riesgo , Factores de Tiempo , Pruebas de Toxicidad
13.
Europace ; 23(11): 1795-1814, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34313298

RESUMEN

Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.


Asunto(s)
Fibrilación Atrial , Técnicas Electrofisiológicas Cardíacas , Animales , Electrofisiología Cardíaca , Fenómenos Electrofisiológicos , Humanos , Modelos Teóricos
14.
Cryobiology ; 98: 33-38, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33412156

RESUMEN

Accidental hypothermia is associated with increased risk for arrhythmias. QRS/QTc is proposed as an ECG-marker, where decreasing values predict hypothermia-induced ventricular arrhythmias. If reliable it should also predict nonappearance of arrhythmias, observed in species like rat that regularly tolerate prolonged hypothermia. A rat model designed for studying cardiovascular function during cooling, hypothermia and subsequent rewarming was chosen due to species-dependent resistance to ventricular arrhythmias. ECG was recorded throughout the protocol. No ventricular arrhythmias occurred during experiments. QRS/QTc increased throughout the cooling period and remained above normothermic baseline until rewarmed. Different from the high incidence of hypothermia-induced ventricular arrhythmias in accidental hypothermia patients, where QRS/QTc ratio is decreased in moderate hypothermia; hypothermia and rewarming of rats is not associated with increased risk for ventricular fibrillation. This resistance to lethal hypothermia-induced arrhythmias was predicted by QRS/QTc.


Asunto(s)
Hipotermia Inducida , Hipotermia , Animales , Arritmias Cardíacas/etiología , Criopreservación/métodos , Humanos , Hipotermia/terapia , Ratas , Recalentamiento , Fibrilación Ventricular/etiología
15.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205607

RESUMEN

The immature electrophysiology of human-induced pluripotent stem cell-derived cardiomyocytes (hiCMs) complicates their use for therapeutic and pharmacological purposes. An insufficient inward rectifying current (IK1) and the presence of a funny current (if) cause spontaneous electrical activity. This study tests the hypothesis that the co-culturing of hiCMs with a human embryonic kidney (HEK) cell-line expressing the Kir2.1 channel (HEK-IK1) can generate an electrical syncytium with an adult-like cardiac electrophysiology. The mechanical activity of co-cultures using different HEK-IK1:hiCM ratios was compared with co-cultures using wildtype (HEK-WT:hiCM) or hiCM alone on days 3-8 after plating. Only ratios of 1:3 and 1:1 showed a significant reduction in spontaneous rate at days 4 and 6, suggesting that IK1 was influencing the electrophysiology. Detailed analysis at day 4 revealed an increased incidence of quiescent wells or sub-areas. Electrical activity showed a decreased action potential duration (APD) at 20% and 50%, but not at 90%, alongside a reduced amplitude of the aggregate AP signal. A computational model of the 1:1 co-culture replicates the electrophysiological effects of HEK-WT. The addition of the IK1 conductance reduced the spontaneous rate and APD20, 50 and 90, and minor variation in the intercellular conductance caused quiescence. In conclusion, a 1:1 co-culture HEK-IK1:hiCM caused changes in electrophysiology and spontaneous activity consistent with the integration of IK1 into the electrical syncytium. However, the additional electrical effects of the HEK cell at 1:1 increased the possibility of electrical quiescence before sufficient IK1 was integrated into the syncytium.


Asunto(s)
Técnicas de Cocultivo/métodos , Miocitos Cardíacos/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Células Gigantes , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas , Contracción Miocárdica
16.
J Mol Cell Cardiol ; 148: 106-119, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918915

RESUMEN

AIMS: Endurance training improves aerobic fitness and cardiac function in individuals with heart failure. However, the underlying mechanisms are not well characterized. Exercise training could therefore act as a tool to discover novel targets for heart failure treatment. We aimed to associate changes in Ca2+ handling and electrophysiology with micro-RNA (miRNA) profile in exercise trained heart failure rats to establish which miRNAs induce heart failure-like effects in Ca2+ handling and electrophysiology. METHODS AND RESULTS: Post-myocardial infarction (MI) heart failure was induced in Sprague Dawley rats. Rats with MI were randomized to sedentary control (sed), moderate (mod)- or high-intensity (high) endurance training for 8 weeks. Exercise training improved cardiac function, Ca2+ handling and electrophysiology including reduced susceptibility to arrhythmia in an exercise intensity-dependent manner where high intensity gave a larger effect. Fifty-five miRNAs were significantly regulated (up or down) in MI-sed, of which 18 and 3 were changed towards Sham-sed in MI-high and MI-mod, respectively. Thereafter we experimentally altered expression of these "exercise-miRNAs" individually in human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CM) in the same direction as they were changed in MI. Of the "exercise-miRNAs", miR-214-3p prolonged AP duration, whereas miR-140 and miR-208a shortened AP duration. miR-497-5p prolonged Ca2+ release whereas miR-214-3p and miR-31a-5p prolonged Ca2+ decay. CONCLUSION: Using exercise training as a tool, we discovered that miR-214-3p, miR-497-5p, miR-31a-5p contribute to heart-failure like behaviour in Ca2+ handling and electrophysiology and could be potential treatment targets.


Asunto(s)
Fenómenos Electrofisiológicos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Condicionamiento Físico Animal , Aerobiosis , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/fisiopatología , Biomarcadores/metabolismo , Cardiomegalia/complicaciones , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Femenino , Regulación de la Expresión Génica , Insuficiencia Cardíaca/complicaciones , MicroARNs/metabolismo , Contracción Miocárdica/fisiología , Infarto del Miocardio/complicaciones , Miocitos Cardíacos/metabolismo , Ratas Sprague-Dawley , Fibrilación Ventricular/complicaciones , Fibrilación Ventricular/genética , Fibrilación Ventricular/fisiopatología
17.
Circulation ; 139(20): 2358-2371, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31082292

RESUMEN

Changes of intracellular Ca2+ concentration regulate many aspects of cardiac myocyte function. About 99% of the cytoplasmic calcium in cardiac myocytes is bound to buffers, and their properties will therefore have a major influence on Ca2+ signaling. This article considers the fundamental properties and identities of the buffers and how to measure them. It reviews the effects of buffering on the systolic Ca2+ transient and how this may change physiologically, and in heart failure and both atrial and ventricular arrhythmias, as well. It is concluded that the consequences of this strong buffering may be more significant than currently appreciated, and a fuller understanding is needed for proper understanding of cardiac calcium cycling and contractility.


Asunto(s)
Señalización del Calcio/fisiología , Miocitos Cardíacos/metabolismo , Animales , Fibrilación Atrial/metabolismo , Sitios de Unión , Tampones (Química) , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio/fisiología , Cardiomiopatía Hipertrófica/metabolismo , Citoplasma/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Líquido Intracelular/metabolismo , Ligandos , Contracción Miocárdica , Retículo Sarcoplasmático/enzimología , Troponina C/metabolismo
18.
Circ Res ; 122(3): e5-e16, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282212

RESUMEN

RATIONALE: There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. OBJECTIVE: Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. METHODS AND RESULTS: MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. CONCLUSIONS: Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models.


Asunto(s)
Contracción Miocárdica , Miocitos Cardíacos/fisiología , Programas Informáticos , Algoritmos , Animales , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/fisiopatología , Fármacos Cardiovasculares/farmacología , Diferenciación Celular , Células Cultivadas , Subunidades beta de la Proteína de Unión al GTP/deficiencia , Subunidades beta de la Proteína de Unión al GTP/genética , Humanos , Síndrome de QT Prolongado/patología , Síndrome de QT Prolongado/fisiopatología , Masculino , Microscopía/métodos , Modelos Cardiovasculares , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Fenotipo , Células Madre Pluripotentes/citología , Conejos , Grabación en Video , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
19.
Regul Toxicol Pharmacol ; 117: 104756, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32822771

RESUMEN

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Arritmias Cardíacas/inducido químicamente , Cardiotoxinas/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Guías de Práctica Clínica como Asunto/normas , Estudios de Validación como Asunto , Células Madre Adultas/patología , Células Madre Adultas/fisiología , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/patología
20.
J Physiol ; 597(14): 3619-3638, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31093979

RESUMEN

KEY POINTS: Early-afterdepolarizations (EADs) are abnormal action potential oscillations and a known cause of cardiac arrhythmias. Ventricular EADs involve reactivation of a Ca2+ current (ICaL ) in its 'window region' voltage range. However, electrical mechanisms of atrial EADs, a potential cause of atrial fibrillation, are poorly understood. Atrial cells were obtained from consenting patients undergoing heart surgery, as well as from rabbits. ICaL was blocked with nifedipine and then a hybrid patch clamp/mathematical-modelling technique, 'dynamic clamping', was used to record action potentials at the same time as injecting an artificial, modifiable, ICaL (ICaL,D-C ). Progressively widening the ICaL,D-C window region produced EADs of various types, dependent on window width. EAD production was strongest upon moving the activation (vs. inactivation) side of the window. EADs were then induced by a different method: increasing ICaL,D-C amplitude and/or K+ channel-blockade (4-aminopyridine). Narrowing of the ICaL,D-C window by ∼10 mV abolished these EADs. Atrial ICaL window narrowing is worthy of further testing as a potential anti-atrial fibrillation drug mechanism. ABSTRACT: Atrial early-afterdepolarizations (EADs) may contribute to atrial fibrillation (AF), perhaps involving reactivation of L-type Ca2+ current (ICaL ) in its window region voltage range. The present study aimed (i) to validate the dynamic clamp technique for modifying the ICaL contribution to atrial action potential (AP) waveform; (ii) to investigate the effects of widening the window ICaL on EAD-propensity; and (iii) to test whether EADs from increased ICaL and AP duration are supressed by narrowing the window ICaL . ICaL and APs were recorded from rabbit and human atrial myocytes by whole-cell-patch clamp. During AP recording, ICaL was inhibited (3 µm nifedipine) and replaced by a dynamic clamp model current, ICaL,D-C (tuned to native ICaL characteristics), computed in real-time (every 50 µs) based on myocyte membrane potential. ICaL,D-C -injection restored the nifedipine-suppressed AP plateau. Widening the window ICaL,D-C , symmetrically by stepwise simultaneous equal shifts of half-voltages (V0.5 ) of ICaL,D-C activation (negatively) and inactivation (positively), generated EADs (single, multiple or preceding repolarization failure) in a window width-dependent manner, as well as AP alternans. A stronger EAD-generating effect resulted from independently shifting activation V0.5 (asymmetrical widening) than inactivation V0.5 ; for example, a 15 mV activation shift produced EADs in nine of 17 (53%) human atrial myocytes vs. 0 of 18 from inactivation shift (P < 0.05). In 11 rabbit atrial myocytes in which EADs were generated either by increasing the conductance of normal window width ICaL,D-C or subsequent 4-aminopyridine (2 mm), window ICaL,D-C narrowing (10 mV) abolished EADs of all types (P < 0.05). The present study validated the dynamic clamp for ICaL , which is novel in atrial cardiomyocytes, and showed that EADs of various types are generated by widening (particularly asymmetrically) the window ICaL , as well as abolished by narrowing it. Window ICaL narrowing is a potential therapeutic mechanism worth pursuing in the search for improved anti-AF drugs.


Asunto(s)
Potenciales de Acción/fisiología , Calcio/metabolismo , Anciano , Animales , Fibrilación Atrial/metabolismo , Canales de Calcio Tipo L/metabolismo , Células Cultivadas , Femenino , Atrios Cardíacos/metabolismo , Humanos , Masculino , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp/métodos , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA