Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 29(12): 1881-1895, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37730435

RESUMEN

Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. In kinetoplastid protozoa, including T. brucei, posttranscriptional control mechanisms are the primary means of gene regulation, and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that reportedly interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We validate the DRBD18 interaction with translating ribosomes and the translation initiation factor, eIF3a. We further show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, that is, changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. In DRBD18-depleted cells, a set of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. RNA immunoprecipitation/qRT-PCR indicates that DRBD18 associates with members of both repressed and enhanced cohorts. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.


Asunto(s)
Trypanosoma brucei brucei , Animales , Trypanosoma brucei brucei/genética , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Polirribosomas/genética , ARN , Proteínas Protozoarias/genética , Mamíferos
2.
J Am Chem Soc ; 146(13): 9326-9334, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529806

RESUMEN

Recognition-encoded melamine oligomers (REMO) are synthetic polymers that feature an alternating 1,3,5-triazine-piperazine backbone and side-chains equipped with either a phenol or phosphine oxide recognition unit. An automated method for the solid-phase synthesis (SPS) of REMO of any specified sequence has been developed starting from dichlorotriazine monomer building blocks. Complementary homo-oligomers with either six phenols or six phosphine oxides were synthesized and shown to form a stable duplex in nonpolar solvents by NMR denaturation experiments. The duplex was covalently trapped by equipping the ends of the oligomers with an azide and an alkyne group and using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The SPS methodology was adapted to synthesize mixed sequence libraries by using a mixture of two different dichlorotriazine building blocks in each coupling cycle of an oligomer synthesis. The resulting libraries contain statistical mixtures of all possible sequences. The self-assembly properties of these libraries were screened by using the CuAAC reaction to trap any duplexes present. In mixed sequence libraries of 6-mers, the trapping experiments showed that only sequence-complementary oligomers formed duplexes at micromolar concentrations in dichloromethane. The automated synthesis approach developed here provides access to large libraries of mixed sequence synthetic polymers, and the covalent trapping experiment provides a convenient tool for screening functional properties of mixtures. The results suggest high-fidelity sequence-selective duplex formation in mixtures of 6-mer sequences of the REMO architecture.

3.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338692

RESUMEN

The infectious agent for African trypanosomiasis, Trypanosoma brucei, possesses a unique and essential translocase of the mitochondrial inner membrane, known as the TbTIM17 complex. TbTim17 associates with six small TbTims (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction patterns of these smaller TbTims with each other and TbTim17 are not clear. Through yeast two-hybrid (Y2H) and co-immunoprecipitation analyses, we demonstrate that all six small TbTims interact with each other. Stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. However, TbTim10 shows weaker associations with TbTim13, which has a stronger connection with TbTim17. Each of the small TbTims also interacts strongly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial for maintaining the steady-state levels of the TbTIM17 complex. Further analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except for TbTim13, is present in ~70 kDa complexes, possibly existing in heterohexameric forms. In contrast, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionates with TbTim17. Altogether, our results demonstrate that, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific to T. brucei.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Transporte de Membrana/análisis , Saccharomyces cerevisiae/metabolismo , Proteínas Protozoarias/química
4.
Biol Cell ; 113(1): 39-57, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33084070

RESUMEN

BACKGROUND: The translocase of the mitochondrial inner membrane (TIM) imports most of the nucleus-encoded proteins that are destined for the matrix, inner membrane (IM) and the intermembrane space (IMS). Trypanosoma brucei, the infectious agent for African trypanosomiasis, possesses a unique TIM complex consisting of several novel proteins in association with a relatively conserved protein TbTim17. Tandem affinity purification of the TbTim17 protein complex revealed TbTim54 as a potential component of this complex. RESULTS: TbTim54, a trypanosome-specific IMS protein, is peripherally associated with the IM and is present in a protein complex slightly larger than the TbTim17 complex. TbTim54 knockdown (KD) reduced the import of TbTim17 and compromised the integrity of the TbTim17 complex. TbTim54 KD inhibited the in vitro mitochondrial import and assembly of the internal signal-containing mitochondrial carrier proteins MCP3, MCP5 and MCP11 to a greater extent than TbTim17 KD. Furthermore, TbTim54 KD, but not TbTim17 KD, significantly hampered the mitochondrial targeting of ectopically expressed MCP3 and MCP11. These observations along with our previous finding that the mitochondrial import of N-terminal signal-containing proteins like cytochrome oxidase subunit 4 and MRP2 was affected to a greater extent by TbTim17 KD than TbTim54 KD indicating a substrate-specificity of TbTim54 for internal-signal containing mitochondrial proteins. In other organisms, small Tim chaperones in the IMS are known to participate in the translocation of MCPs. We found that TbTim54 can directly interact with at least two of the six known small TbTim proteins, TbTim11 and TbTim13, as well as with the N-terminal domain of TbTim17. CONCLUSION: TbTim54 interacts with TbTim17. It also plays a crucial role in the mitochondrial import and complex assembly of internal signal-containing IM proteins in T. brucei. SIGNIFICANCE: We are the first to characterise TbTim54, a novel TbTim that is involved primarily in the mitochondrial import of MCPs and TbTim17 in T. brucei.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Proteínas Mitocondriales/fisiología , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Transporte de Proteínas
5.
Nucleic Acids Res ; 48(15): 8704-8723, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32738044

RESUMEN

Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression. We show that edited CYb mRNA is downregulated in mammalian bloodstream forms (BSF) at the level of editing initiation and/or edited mRNA stability. In contrast, edited COIII mRNAs are depleted in BSF by inhibition of editing progression. We identify cell line-specific differences in the mechanisms abrogating COIII mRNA editing, including the possible utilization of terminator gRNAs that preclude the 3' to 5' progression of editing. By examining the developmental timing of altered mitochondrial mRNA levels, we also reveal transcript-specific developmental checkpoints in epimastigote (EMF), metacyclic (MCF), and BSF. These studies represent the first analysis of the mechanisms governing edited mRNA levels during T. brucei development and the first to interrogate U-indel editing in EMF and MCF life cycle stages.


Asunto(s)
Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mitocondrial/genética , ARN Protozoario/genética , Trypanosoma brucei brucei/genética , Mitocondrias/genética , Proteínas Protozoarias/genética , Edición de ARN/genética , ARN Guía de Kinetoplastida/genética , Trypanosoma brucei brucei/metabolismo
6.
Eukaryot Cell ; 14(3): 286-96, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25576485

RESUMEN

Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis, possesses a single member of the presequence and amino acid transporter (PRAT) protein family, which is referred to as TbTim17. In contrast, three homologous proteins, ScTim23, ScTim17, and ScTim22, are found in Saccharomyces cerevisiae and higher eukaryotes. Here, we show that TbTim17 cannot rescue Tim17, Tim23, or Tim22 mutants of S. cerevisiae. We expressed S. cerevisiae Tim23, Tim17, and Tim22 in T. brucei. These heterologous proteins were properly imported into mitochondria in the parasite. Further analysis revealed that although ScTim23 and ScTim17 were integrated into the mitochondrial inner membrane and assembled into a protein complex similar in size to TbTim17, only ScTim17 was stably associated with TbTim17. In contrast, ScTim22 existed as a protease-sensitive soluble protein in the T. brucei mitochondrion. In addition, the growth defect caused by TbTim17 knockdown in T. brucei was partially restored by the expression of ScTim17 but not by the expression of either ScTim23 or ScTim22, whereas the expression of TbTim17 fully complemented the growth defect caused by TbTim17 knockdown, as anticipated. Similar to the findings for cell growth, the defect in the import of mitochondrial proteins due to depletion of TbTim17 was in part restored by the expression of ScTim17 but was not complemented by the expression of either ScTim23 or ScTim22. Together, these results suggest that TbTim17 is divergent compared to ScTim23 but that its function is closer to that of ScTim17. In addition, ScTim22 could not be sorted properly in the T. brucei mitochondrion and thus failed to complement the function of TbTim17.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Protozoarias/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/genética
7.
Eukaryot Cell ; 13(4): 539-47, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24562910

RESUMEN

Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.


Asunto(s)
Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Oxidorreductasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Expresión Génica , Datos de Secuencia Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Trypanosoma brucei brucei/genética
8.
mBio ; 14(5): e0185423, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37795988

RESUMEN

IMPORTANCE: Trypanosoma brucei is the unicellular parasite that causes African sleeping sickness and nagana disease in livestock. The parasite has a complex life cycle consisting of several developmental forms in the human and tsetse fly insect vector. Both the mammalian and insect hosts provide different nutritional environments, so T. brucei must adapt its metabolism to promote its survival and to complete its life cycle. As T. brucei is transmitted from the human host to the fly, the parasite must regulate its mitochondrial gene expression through a process called uridine insertion/deletion editing to achieve mRNAs capable of being translated into functional respiratory chain proteins required for energy production in the insect host. Therefore, it is essential to understand the mechanisms by which T. brucei regulates mitochondrial gene expression during transmission from the mammalian host to the insect vector.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Humanos , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Temperatura , Moscas Tse-Tse/parasitología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Mamíferos/metabolismo
9.
bioRxiv ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36798237

RESUMEN

Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. Whereas most well-studied organisms rely on transcriptional control as the main regulator of gene expression, post-transcriptional control mechanisms are particularly important in T. brucei , and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, i.e . changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. Proteomic analysis validates these data. In DRBD18-depleted cells, a cohort of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.

10.
bioRxiv ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37398442

RESUMEN

Trypanosoma brucei is an early divergent parasitic protozoan that causes a fatal disease, African trypanosomiasis. T. brucei possesses a unique and essential translocase of the mitochondrial inner membrane, the TbTIM17 complex. TbTim17 associates with 6 small TbTims, (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction pattern of the small TbTims with each other and TbTim17 are not clear. Here, we demonstrated by yeast two-hybrid (Y2H) analysis that all six small TbTims interact with each other, but stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. Each of the small TbTims also interact directly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial to maintain the steady-state levels of the TbTIM17 complex. Co-immunoprecipitation analyses from T. brucei mitochondrial extracts also showed that TbTim10 has a stronger association with TbTim9 and TbTim8/13, but a weaker association with TbTim13, whereas TbTim13 has a stronger connection with TbTim17. Analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except TbTim13, is present in ∼70 kDa complexes, which could be heterohexameric forms of the small TbTims. However, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionated with TbTim17. Altogether, our results demonstrated that TbTim13 is a part of the TbTIM complex and the smaller complexes of the small TbTims likely interact with the larger complex dynamically. Therefore, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific in T. brucei .

11.
Environ Entomol ; 48(4): 856-866, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31232452

RESUMEN

Terrestrial arthropods are a critical component of rangeland ecosystems that convert primary production into resources for higher trophic levels. During spring and summer, select arthropod taxa are the primary food of breeding prairie birds, of which many are imperiled in North America. Livestock grazing is globally the most widespread rangeland use and can affect arthropod communities directly or indirectly through herbivory. To examine effects of management on arthropod community structure and avian food availability, we studied ground-dwelling arthropods on grazed and ungrazed sagebrush rangelands of central Montana. From 2012 to 2015, samples were taken from lands managed as part of a rest-rotation grazing program and from idle lands where livestock grazing has been absent for over a decade. Bird-food arthropods were twice as prevalent in managed pastures despite the doubling of overall activity-density of arthropods in idle pastures. Activity-density on idled lands was largely driven by a tripling of detritivores and a doubling in predators. Predator community structure was simplified on idled lands, where Lycosid spiders increased by fivefold. In contrast, managed lands supported a more diverse assemblage of ground-dwelling arthropods, which may be particularly beneficial for birds in these landscapes if, for example, diversity promotes temporal stability in this critical food resource. Our results suggest that periodic disturbance may enhance arthropod diversity, and that birds may benefit from livestock grazing with periodic rest or deferment.


Asunto(s)
Artrópodos , Animales , Aves , Ecosistema , Pradera , Ganado , Montana , América del Norte
12.
mSphere ; 3(3)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29925672

RESUMEN

The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes.IMPORTANCETrypanosoma brucei is the causative agent of African sleeping sickness. The parasite's mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei, a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei, and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Técnicas de Silenciamiento del Gen , Inmunoprecipitación , Espectrometría de Masas , Membranas Mitocondriales/química , Unión Proteica , Mapeo de Interacción de Proteínas , Trypanosoma brucei brucei/crecimiento & desarrollo , Técnicas del Sistema de Dos Híbridos
13.
Biosens Bioelectron ; 117: 153-160, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29894852

RESUMEN

An effective method of combating infectious diseases is the deployment of hand-held devices at the point-of-care (POC) for screening or self-monitoring applications. There is a need for very sensitive, low-cost and quantitative diagnostic devices. In this study, we present a low-cost, multiplexed fluorescence detection platform that has a high sensitivity and wide dynamic range. Our system features inexpensive 3 × 3 mm interference filters with a high stopband rejection, sharp transition edges, and greater than 90% transmission in the passband. In addition to the filters, we improve signal-to-noise ratio by leveraging time for accuracy using a charge-integration-based readout. The fluorescence sensing platform provides a sensitivity to photon flux of ∼1×104photons/mm2sec and has the potential for 2-3 orders of magnitude improvement in sensitivity over standard colorimetric detection that uses colored latex microspheres. We also detail the design, development, and characterization of our low-cost fluorescence detection platform and demonstrate 100% and 97.96% reduction in crosstalk probability and filter cost, respectively. This is achieved by reducing filter dimensions and ensuring appropriate channel isolation in a 2 × 2 array configuration. Practical considerations with low-cost interference filter system design, analysis, and system performance are also discussed. The performance of our platform is compared to that of a standard laboratory array scanner. We also demonstrate the detection of antibodies to human papillomavirus (HPV16) E7 protein, as a potential biomarker for early cervical cancer detection in human plasma.


Asunto(s)
Anticuerpos/sangre , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Detección Precoz del Cáncer/instrumentación , Detección Precoz del Cáncer/métodos , Neoplasias del Cuello Uterino/diagnóstico , Biomarcadores/sangre , Colorimetría/normas , Femenino , Humanos , Proteínas E7 de Papillomavirus/inmunología , Sistemas de Atención de Punto
14.
Ecol Evol ; 8(1): 356-364, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321877

RESUMEN

Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse (Centrocercus urophasianus; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.

15.
Mol Biochem Parasitol ; 218: 4-15, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28965880

RESUMEN

Trypanosoma brucei Tim17(TbTim17), the single member of the Tim17/23/22 protein family, is an essential component of the translocase of the mitochondrial inner membrane (TIM). In spite of the conserved secondary structure, the primary sequence of TbTim17, particularly the N-terminal hydrophilic region, is significantly divergent. In order to understand the function of this region we expressed two N-terminal deletion mutants (Δ20 and Δ30) of TbTim17 in T. brucei. Both of these mutants of TbTim17 were targeted to mitochondria, however, they failed to complement the growth defect of TbTim17 RNAi cells. In addition, the import defect of other nuclear encoded proteins into TbTim17 knockdown mitochondria were not restored by expression of the N-terminal deletion mutants but complemented by knock-in of the full-length protein. Further analysis revealed that Δ20-TbTim17 and Δ30-TbTim17 mutants were not localized in the mitochondrial inner membrane. Analysis of the protein complexes in the wild type and mutant mitochondria by two-dimensional Blue-native/SDS-PAGE revealed that none of these mutants are assembled into the TbTim17 protein complex. However, FL-TbTim17 was integrated into the mitochondrial inner membrane and assembled into TbTim17 complex. Co-immunoprecipitation analysis showed that unlike the FL-TbTim17, mutant proteins are not associated with the endogenous TbTim17 as well as its interacting partner TbTim62, a novel trypanosome specific Tim. Together, these results show that the N-terminal domain of TbTim17 plays unique and essential roles for its sorting and assembly into the TbTim17 protein complex.


Asunto(s)
Membranas Mitocondriales/enzimología , Peptidil Transferasas/metabolismo , Multimerización de Proteína , Trypanosoma brucei brucei/enzimología , Electroforesis en Gel de Poliacrilamida , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Variación Genética , Membranas Mitocondriales/química , Peptidil Transferasas/genética , Dominios Proteicos , Proteoma/análisis , Eliminación de Secuencia , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo
16.
Sci Rep ; 6: 29057, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27374875

RESUMEN

Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm(2). Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers.


Asunto(s)
Biomarcadores de Tumor/sangre , Técnicas Biosensibles/métodos , Inmunoglobulina G/sangre , Infecciones por Papillomavirus/sangre , Neoplasias del Cuello Uterino/sangre , Anticuerpos/sangre , Proteínas de Unión al ADN/sangre , Femenino , Papillomavirus Humano 16/aislamiento & purificación , Papillomavirus Humano 16/patogenicidad , Humanos , Límite de Detección , Proteínas Oncogénicas Virales/sangre , Proteínas E7 de Papillomavirus/sangre , Infecciones por Papillomavirus/patología , Patología Molecular , Sistemas de Atención de Punto , Análisis por Matrices de Proteínas , Proteínas Represoras/sangre , Neoplasias del Cuello Uterino/patología
17.
Addiction ; 105(10): 1698-706, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20331548

RESUMEN

Both depression and substance use disorders represent major global public health concerns and are often co-occurring. Although there are ongoing discoveries regarding the pathophysiology and treatment of each condition, common mechanisms and effective treatments for co-occurring depression and substance abuse remain elusive. Mindfulness training has been shown recently to benefit both depression and substance use disorders, suggesting that this approach may target common behavioral and neurobiological processes. However, it remains unclear whether these pathways constitute specific shared neurobiological mechanisms or more extensive components universal to the broader human experience of psychological distress or suffering.We offer a theoretical, clinical and neurobiological perspective of the overlaps between these disorders, highlight common neural pathways that play a role in depression and substance use disorders and discuss how these commonalities may frame our conceptualization and treatment of co-occurring disorders. Finally, we discuss how advances in our understanding of potential mechanisms of mindfulness training may offer not only unique effects on depression and substance use, but also offer promise for treatment of co-occurring disorders.


Asunto(s)
Atención , Encéfalo/fisiopatología , Terapia Cognitivo-Conductual/métodos , Trastorno Depresivo Mayor/terapia , Meditación/métodos , Trastornos Relacionados con Sustancias/rehabilitación , Afecto , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/psicología , Diagnóstico Dual (Psiquiatría) , Humanos , Meditación/psicología , Relaciones Metafisicas Mente-Cuerpo , Vías Nerviosas , Prevención Secundaria , Estrés Psicológico/psicología , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/psicología , Pensamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA