Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(1): 248-258, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34949090

RESUMEN

Earth-abundant transition metal phosphides are promising materials for energy-related applications. Specifically, copper(I) phosphide is such a material and shows excellent photocatalytic activity. Currently, there are substantial research efforts to synthesize well-defined metal-semiconductor nanoparticle heterostructures to enhance the photocatalytic performance by an efficient separation of charge carriers. The involved crystal facets and heterointerfaces have a major impact on the efficiency of a heterostructured photocatalyst, which points out the importance of synthesizing potential photocatalysts in a controlled manner and characterizing their structural and morphological properties in detail. In this study, we investigated the interface dynamics occurring around the synthesis of Ag-Cu3P nanoparticle heterostructures by a chemical reaction between Ag-Cu nanoparticle heterostructures and phosphine in an environmental transmission electron microscope. The major product of the Cu-Cu3P phase transformation using Ag-Cu nanoparticle heterostructures with a defined interface as a template preserved the initially present Ag{111} facet of the heterointerface. After the complete transformation, corner truncation of the faceted Cu3P phase led to a physical transformation of the nanoparticle heterostructure. In some cases, the structural rearrangement toward an energetically more favorable heterointerface has been observed and analyzed in detail at the atomic level. The herein-reported results will help better understand dynamic processes in Ag-Cu3P nanoparticle heterostructures and enable facet-engineered surface and heterointerface design to tailor their physical properties.

2.
ACS Nano ; 17(8): 7674-7684, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37017472

RESUMEN

Metal-semiconductor nanoparticle heterostructures are exciting materials for photocatalytic applications. Phase and facet engineering are critical for designing highly efficient catalysts. Therefore, understanding processes occurring during the nanostructure synthesis is crucial to gain control over properties such as the surface and interface facets' orientations, morphology, and crystal structure. However, the characterization of nanostructures after the synthesis makes clarifying their formation mechanisms nontrivial and sometimes even impossible. In this study, we used an environmental transmission electron microscope with an integrated metal-organic chemical vapor deposition system to enlighten fundamental dynamic processes during the Ag-Cu3P-GaP nanoparticle synthesis using Ag-Cu3P seed particles. Our results reveal that the GaP phase nucleated at the Cu3P surface, and growth proceeded via a topotactic reaction involving counter-diffusion of Cu+ and Ga3+ cations. After the initial GaP growth steps, the Ag and Cu3P phases formed specific interfaces with the GaP growth front. GaP growth proceeded by a similar mechanism observed for the nucleation involving the diffusion of Cu atoms through/along the Ag phase toward other regions, followed by the redeposition of Cu3P at a specific Cu3P crystal facet, not in contact with the GaP phase. The Ag phase was essential for this process by acting as a medium enabling the efficient transport of Cu atoms away from and, simultaneously, Ga atoms toward the GaP-Cu3P interface. This study shows that enlightening fundamental processes is critical for progress in synthesizing phase- and facet-engineered multicomponent nanoparticles with tailored properties for specific applications, including catalysis.

3.
Nanoscale Adv ; 3(11): 3041-3052, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36133665

RESUMEN

Synthesis methods of highly functional core@shell nanoparticles with high throughput and high purity are in great demand for applications, including catalysis and optoelectronics. Traditionally chemical synthesis has been widely explored, but recently, gas-phase methods have attracted attention since such methods can provide a more flexible choice of materials and altogether avoid solvents. Here, we demonstrate that Cu@Ag core-shell nanoparticles with well-controlled size and compositional variance can be generated via surface segregation using spark ablation with an additional heating step, which is a continuous gas-phase process. The characterization of the nanoparticles reveals that the Cu-Ag agglomerates generated by spark ablation adopt core-shell or quasi-Janus structures depending on the compaction temperature used to transform the agglomerates into spherical particles. Molecular dynamics (MD) simulations verify that the structural evolution is caused by heat-induced surface segregation. With the incorporated heat treatment that acts as an annealing and equilibrium cooling step after the initial nucleation and growth processes in the spark ablation, the presented method is suitable for creating nanoparticles with both uniform size and composition and uniform bimetallic configuration. We confirm the compositional uniformity between particles by analyzing compositional variance of individual particles rather than presenting an ensemble-average of many particles. This gas-phase synthesis method can be employed for generating other bi- or multi-metallic nanoparticles with the predicted configuration of the structure from the surface energy and atomic size of the elements.

4.
Appl Spectrosc ; 75(11): 1402-1409, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34477464

RESUMEN

We report the observation of photoluminescence emission from airborne gold, silver, and copper nanoparticles. A continuous wave 532 nm laser was employed for excitation. Photoluminescence from gold nanoparticles carried in a nitrogen gas flow was both spectrally resolved and directly imaged in situ using an intensified charge-coupled device camera. The simultaneously detected Raman signal from the nitrogen molecules enables quantitative estimation of the photoluminescence quantum yield of the gold nanoparticles. Photoluminescence from metal nanoparticles carried in a gas flow provides a potential tool for operando imaging of plasmonic metal nanoparticles in aerosol reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA