Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 49(2): 312-325.e5, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076102

RESUMEN

Heterogeneity between different macrophage populations has become a defining feature of this lineage. However, the conserved factors defining macrophages remain largely unknown. The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal transition; however, its role within the immune system is only now being elucidated. We show here that Zeb2 expression is a conserved feature of macrophages. Using Clec4f-cre, Itgax-cre, and Fcgr1-cre mice to target five different macrophage populations, we found that loss of ZEB2 resulted in macrophage disappearance from the tissues, coupled with their subsequent replenishment from bone-marrow precursors in open niches. Mechanistically, we found that ZEB2 functioned to maintain the tissue-specific identities of macrophages. In Kupffer cells, ZEB2 achieved this by regulating expression of the transcription factor LXRα, removal of which recapitulated the loss of Kupffer cell identity and disappearance. Thus, ZEB2 expression is required in macrophages to preserve their tissue-specific identities.


Asunto(s)
Macrófagos del Hígado/citología , Receptores X del Hígado/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Animales , Linaje de la Célula/inmunología , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Macrófagos del Hígado/inmunología , Hígado/citología , Receptores X del Hígado/metabolismo , Pulmón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Cell Mol Life Sci ; 71(18): 3599-609, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24573695

RESUMEN

Epithelial homeostasis within the epidermis is maintained by means of multiple cell-cell adhesion complexes such as adherens junctions, tight junctions, gap junctions, and desmosomes. These complexes co-operate in the formation and the regulation of the epidermal barrier. Disruption of the epidermal barrier through the deregulation of the above complexes is the cause behind a number of skin disorders such as psoriasis, dermatitis, keratosis, and others. During epithelial-to-mesenchymal transition (EMT), epithelial cells lose their adhesive capacities and gain mesenchymal properties. ZEB transcription factors are key inducers of EMT. In order to gain a better understanding of the functional role of ZEB2 in epidermal homeostasis, we generated a mouse model with conditional overexpression of Zeb2 in the epidermis. Our analysis revealed that Zeb2 expression in the epidermis leads to hyperproliferation due to the combined downregulation of different tight junction proteins compromising the epidermal barrier. Using two epidermis-specific in vivo models and in vitro promoter assays, we identified occludin as a new Zeb2 target gene. Immunohistological analysis performed on human skin biopsies covering various pathogeneses revealed ZEB2 expression in the epidermis of pemphigus vulgaris. Collectively, our data support the notion for a potential role of ZEB2 in intracellular signaling of this disease.


Asunto(s)
Proteínas de Homeodominio/fisiología , Proteínas Represoras/fisiología , Piel/metabolismo , Uniones Estrechas/metabolismo , Animales , Línea Celular , Transición Epitelial-Mesenquimal/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ocludina/metabolismo , Pénfigo/genética , Pénfigo/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Piel/patología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
3.
Hemasphere ; 2(3): e43, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31723771

RESUMEN

ZEB1 and ZEB2 play pivotal roles in solid cancer metastasis by allowing cancer cells to invade and disseminate through the transcriptional regulation of epithelial-to-mesenchymal transition. ZEB expression is also associated with the acquisition of cancer stem cell properties and therapy resistance. Consequently, expression levels of ZEB1/2 and of their direct target genes are widely seen as reliable prognostic markers for solid tumor aggressiveness and cancer patient outcome. Recent loss-of-function mouse models demonstrated that both ZEBs are also essential hematopoietic transcription factors governing blood lineage commitment and fidelity. Interestingly, both gain- and loss-of-function mutations have been reported in multiple hematological malignancies. Combined with emerging functional studies, these data suggest that ZEB1 and ZEB2 can act as tumor suppressors and/or oncogenes in blood borne malignancies, depending on the cellular context. Here, we review these novel insights and discuss how balanced expression of ZEB proteins may be essential to safeguard the functionality of the immune system and prevent leukemia.

4.
Epigenetics Chromatin ; 11(1): 70, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30445998

RESUMEN

BACKGROUND: Epithelial mesenchymal transition (EMT) is tightly regulated by a network of transcription factors (EMT-TFs). Among them is the nuclear factor ZEB2, a member of the zinc-finger E-box binding homeobox family. ZEB2 nuclear localization has been identified in several cancer types, and its overexpression is correlated with the malignant progression. ZEB2 transcriptionally represses epithelial genes, such as E-cadherin (CDH1), by directly binding to the promoter of the genes it regulates and activating mesenchymal genes by a mechanism in which there is no full agreement. Recent studies showed that EMT-TFs interact with epigenetic regulatory enzymes that alter the epigenome, thereby providing another level of control. The role of epigenetic regulation on ZEB2 function is not well understood. In this study, we aimed to characterize the epigenetic effect of ZEB2 repressive function on the regulation of a small Rab GTPase RAB25. RESULTS: Using cellular models with conditional ZEB2 expression, we show a clear transcriptional repression of RAB25 and CDH1. RAB25 contributes to the partial suppression of ZEB2-mediated cell migration. Furthermore, a highly significant reverse correlation between RAB25 and ZEB2 expression in several human cancer types could be identified. Mechanistically, ZEB2 binds specifically to E-box sequences on the RAB25 promoter. ZEB2 binding is associated with the local increase in DNA methylation requiring DNA methyltransferases as well as histone deacetylation (H3K9Ac) depending on the activity of SIRT1. Surprisingly, SIRT1 and DNMTs did not interact directly with ZEB2, and while SIRT1 inhibition decreased the stability of long-term repression, it did not prevent down-regulation of RAB25 and CDH1 by ZEB2. CONCLUSIONS: ZEB2 expression is resulting in drastic changes at the chromatin level with both clear DNA hypermethylation and histone modifications. Here, we revealed that SIRT1-mediated H3K9 deacetylation helps to maintain gene repression but is not required for the direct ZEB2 repressive function. Targeting epigenetic enzymes to prevent EMT is an appealing approach to limit cancer dissemination, but inhibiting SIRT1 activity alone might have limited effect and will require drug combination to efficiently prevent EMT.


Asunto(s)
Epigénesis Genética , Transición Epitelial-Mesenquimal/fisiología , Sirtuina 1/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Proteínas de Unión al GTP rab/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Metilación de ADN , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Sirtuina 1/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Proteínas de Unión al GTP rab/metabolismo
5.
J Exp Med ; 213(6): 897-911, 2016 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-27185854

RESUMEN

Plasmacytoid dendritic cells (DCs [pDCs]) develop from pre-pDCs, whereas two lineages of conventional DCs (cDCs; cDC1s and cDC2s) develop from lineage-committed pre-cDCs. Several transcription factors (TFs) have been implicated in regulating the development of pDCs (E2-2 and Id2) and cDC1s (Irf8, Id2, and Batf3); however, those required for the early commitment of pre-cDCs toward the cDC2 lineage are unknown. Here, we identify the TF zinc finger E box-binding homeobox 2 (Zeb2) to play a crucial role in regulating DC development. Zeb2 was expressed from the pre-pDC and pre-cDC stage onward and highly expressed in mature pDCs and cDC2s. Mice conditionally lacking Zeb2 in CD11c(+) cells had a cell-intrinsic reduction in pDCs and cDC2s, coupled with an increase in cDC1s. Conversely, mice in which CD11c(+) cells overexpressed Zeb2 displayed a reduction in cDC1s. This was accompanied by altered expression of Id2, which was up-regulated in cDC2s and pDCs from conditional knockout mice. Zeb2 chromatin immunoprecipitation analysis revealed Id2 to be a direct target of Zeb2. Thus, we conclude that Zeb2 regulates commitment to both the cDC2 and pDC lineages through repression of Id2.


Asunto(s)
Células Dendríticas/inmunología , Proteínas de Homeodominio/inmunología , Proteína 2 Inhibidora de la Diferenciación/inmunología , Células Plasmáticas/inmunología , Proteínas Represoras/inmunología , Regulación hacia Arriba/inmunología , Animales , Células Dendríticas/citología , Proteínas de Homeodominio/genética , Proteína 2 Inhibidora de la Diferenciación/genética , Ratones , Ratones Noqueados , Células Plasmáticas/citología , Proteínas Represoras/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA