Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32907977

RESUMEN

Dengue virus (DENV) NS5 RNA-dependent RNA polymerase (RdRp), an important drug target, synthesizes viral RNA and is essential for viral replication. While a number of allosteric inhibitors have been reported for hepatitis C virus RdRp, few have been described for DENV RdRp. Following a diverse compound screening campaign and a rigorous hit-to-lead flowchart combining biochemical and biophysical approaches, two DENV RdRp nonnucleoside inhibitors were identified and characterized. These inhibitors show low- to high-micromolar inhibition in DENV RNA polymerization and cell-based assays. X-ray crystallography reveals that they bind in the enzyme RNA template tunnel. One compound (NITD-434) induced an allosteric pocket at the junction of the fingers and palm subdomains by displacing residue V603 in motif B. Binding of another compound (NITD-640) ordered the fingers loop preceding the F motif, close to the RNA template entrance. Most of the amino acid residues that interacted with these compounds are highly conserved in flaviviruses. Both sites are important for polymerase de novo initiation and elongation activities and essential for viral replication. This work provides evidence that the RNA tunnel in DENV RdRp offers interesting target sites for inhibition.IMPORTANCE Dengue virus (DENV), an important arthropod-transmitted human pathogen that causes a spectrum of diseases, has spread dramatically worldwide in recent years. Despite extensive efforts, the only commercial vaccine does not provide adequate protection to naive individuals. DENV NS5 polymerase is a promising drug target, as exemplified by the development of successful commercial drugs against hepatitis C virus (HCV) polymerase and HIV-1 reverse transcriptase. High-throughput screening of compound libraries against this enzyme enabled the discovery of inhibitors that induced binding sites in the RNA template channel. Characterizations by biochemical, biophysical, and reverse genetics approaches provide a better understanding of the biological relevance of these allosteric sites and the way forward to design more-potent inhibitors.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Sitio Alostérico , Antivirales/farmacología , Sitios de Unión , Cristalografía por Rayos X , Dengue/virología , Transcriptasa Inversa del VIH , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/genética , Replicón , Alineación de Secuencia , Análisis de Secuencia de Proteína , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
2.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597763

RESUMEN

Flavivirus nonstructural protein 5 (NS5) contains an N-terminal methyltransferase (MTase) domain and a C-terminal polymerase (RNA-dependent RNA polymerase [RdRp]) domain fused through a 9-amino-acid linker. While the individual NS5 domains are structurally conserved, in the full-length protein, their relative orientations fall into two classes: the NS5 proteins from Japanese encephalitis virus (JEV) and Zika virus (ZIKV) adopt one conformation, while the NS5 protein from dengue virus serotype 3 (DENV3) adopts another. Here, we report a crystallographic structure of NS5 from DENV2 in a conformation similar to the extended one seen in JEV and ZIKV NS5 crystal structures. Replacement of the DENV2 NS5 linker with DENV1, DENV3, DENV4, JEV, and ZIKV NS5 linkers had modest or minimal effects on in vitro DENV2 MTase and RdRp activities. Heterotypic DENV NS5 linkers attenuated DENV2 replicon growth in cells, while the JEV and ZIKV NS5 linkers abolished replication. Thus, the JEV and ZIKV linkers likely hindered essential DENV2 NS5 interactions with other viral or host proteins within the virus replicative complex. Overall, this work sheds light on the dynamics of the multifunctional flavivirus NS5 protein and its interdomain linker. Targeting the NS5 linker is a possible strategy for producing attenuated flavivirus strains for vaccine design.IMPORTANCE Flaviviruses include important human pathogens, such as dengue virus and Zika virus. NS5 is a nonstructural protein essential for flavivirus RNA replication with dual MTase and RdRp enzyme activities and thus constitutes a major drug target. Insights into NS5 structure, dynamics, and evolution should inform the development of antiviral inhibitors and vaccine design. We found that NS5 from DENV2 can adopt a conformation resembling that of NS5 from JEV and ZIKV. Replacement of the DENV2 NS5 linker with the JEV and ZIKV NS5 linkers abolished DENV2 replication in cells, without significantly impacting in vitro DENV2 NS5 enzymatic activities. We propose that heterotypic flavivirus NS5 linkers impede DENV2 NS5 protein-protein interactions that are essential for virus replication.


Asunto(s)
Virus del Dengue/química , Virus de la Encefalitis Japonesa (Especie)/química , Proteínas no Estructurales Virales/química , Virus Zika/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Virus del Dengue/genética , Virus del Dengue/metabolismo , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Replicón , Alineación de Secuencia , Serogrupo , Homología Estructural de Proteína , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus Zika/genética , Virus Zika/metabolismo
3.
PLoS Pathog ; 12(8): e1005737, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27500641

RESUMEN

Flaviviruses comprise major emerging pathogens such as dengue virus (DENV) or Zika virus (ZIKV). The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp) domain of non-structural protein 5 (NS5). This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a "de novo" initiation mechanism. Crystal structures of the flavivirus RdRp revealed a "closed" conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the "GDD" active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed "N pocket"). Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1-2 µM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas no Estructurales Virales/antagonistas & inhibidores , Células A549 , Antivirales/química , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Dominios Proteicos , ARN Polimerasa Dependiente del ARN/química , Resonancia por Plasmón de Superficie , Proteínas no Estructurales Virales/química
4.
Proc Natl Acad Sci U S A ; 112(48): 14834-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26578813

RESUMEN

Dengue virus (DENV) causes several hundred million human infections and more than 20,000 deaths annually. Neither an efficacious vaccine conferring immunity against all four circulating serotypes nor specific drugs are currently available to treat this emerging global disease. Capping of the DENV RNA genome is an essential structural modification that protects the RNA from degradation by 5' exoribonucleases, ensures efficient expression of viral proteins, and allows escape from the host innate immune response. The large flavivirus nonstructural protein 5 (NS5) (105 kDa) has RNA methyltransferase activities at its N-terminal region, which is responsible for capping the virus RNA genome. The methyl transfer reactions are thought to occur sequentially using the strictly conserved flavivirus 5' RNA sequence as substrate (GpppAG-RNA), leading to the formation of the 5' RNA cap: G0pppAG-RNA → (m7)G0pppAG-RNA ("cap-0")→(m7)G0pppAm2'-O-G-RNA ("cap-1"). To elucidate how viral RNA is specifically recognized and methylated, we determined the crystal structure of a ternary complex between the full-length NS5 protein from dengue virus, an octameric cap-0 viral RNA substrate bearing the authentic DENV genomic sequence (5'-(m7)G0pppA1G2U3U4G5U6U7-3'), and S-adenosyl-l-homocysteine (SAH), the by-product of the methylation reaction. The structure provides for the first time, to our knowledge, a molecular basis for specific adenosine 2'-O-methylation, rationalizes mutagenesis studies targeting the K61-D146-K180-E216 enzymatic tetrad as well as residues lining the RNA binding groove, and offers previously unidentified mechanistic and evolutionary insights into cap-1 formation by NS5, which underlies innate immunity evasion by flaviviruses.


Asunto(s)
Virus del Dengue/enzimología , Metiltransferasas/química , Caperuzas de ARN/química , ARN Viral/química , Proteínas no Estructurales Virales/química , Cristalografía por Rayos X , Virus del Dengue/genética , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Estructura Terciaria de Proteína , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
5.
PLoS Pathog ; 11(3): e1004682, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25775415

RESUMEN

Flavivirus RNA replication occurs within a replication complex (RC) that assembles on ER membranes and comprises both non-structural (NS) viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent-RNA polymerase (RdRp) domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3) at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV), the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5.


Asunto(s)
Virus del Dengue/química , Virus del Dengue/fisiología , Proteínas no Estructurales Virales/química , Replicación Viral/fisiología , Cristalografía por Rayos X , Estructura Terciaria de Proteína , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
6.
J Virol ; 89(20): 10717-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26269182

RESUMEN

We examined the function of the conserved Val/Ile residue within the dengue virus NS5 interdomain linker (residues 263 to 272) by site-directed mutagenesis. Gly substitution or Gly/Pro insertion after the conserved residue increased the linker flexibility and created slightly attenuated viruses. In contrast, Pro substitution abolished virus replication by imposing rigidity in the linker and restricting NS5's conformational plasticity. Our biochemical and reverse genetics experiments demonstrate that NS5 utilizes conformational regulation to achieve optimum viral replication.


Asunto(s)
Virus del Dengue/química , ARN Viral/química , Proteínas no Estructurales Virales/química , Replicación Viral/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Cricetulus , Cristalografía por Rayos X , Virus del Dengue/genética , Virus del Dengue/metabolismo , Expresión Génica , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA