Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 145, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240984

RESUMEN

Cutaneous leishmaniasis, a parasitic disease caused by Leishmania major, is a widely frequent form in humans. To explore the importance of the host gut microbiota and to investigate its changes during L. major infection, two different groups of mouse models were assessed. The microbiome of two parts of the host gut-ileum and colon-from infected and non-infected mice were characterised by sequencing of 16S rDNA using an Ion Torrent PGM platform. Microbiome analysis was performed to reveal changes related to the susceptibility and the genetics of mice strains in two different gut compartments and to compare the results between infected and non-infected mice. The results showed that Leishmania infection affects mainly the ileum microbiota, whereas the colon bacterial community was more stable. Different biomarkers were determined in the gut microbiota of infected resistant mice and infected susceptible mice using LEfSe analysis. Lactobacillaceae was associated with resistance in the colon microbiota of all resistant mice strains infected with L. major. Genes related to xenobiotic biodegradation and metabolism and amino acid metabolism were primarily enriched in the small intestine microbiome of resistant strains, while genes associated with carbohydrate metabolism and glycan biosynthesis and metabolism were most abundant in the gut microbiome of the infected susceptible mice. These results should improve our understanding of host-parasite interaction and provide important insights into the effect of leishmaniasis on the gut microbiota. Also, this study highlights the role of host genetic variation in shaping the diversity and composition of the gut microbiome. KEY POINTS: • Leishmaniasis may affect mainly the ileum microbiota while colon microbiota was more stable. • Biomarkers related with resistance or susceptibility were determined in the gut microbiota of mice. • Several pathways were predicted to be upregulated in the gut microbiota of resistant or susceptible mice.


Asunto(s)
Microbioma Gastrointestinal , Leishmania major , Leishmaniasis Cutánea , Humanos , Animales , Ratones , Susceptibilidad a Enfermedades/microbiología , Biomarcadores
2.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682840

RESUMEN

Reprogramming of metabolic pathways in monocytes and macrophages can induce a proatherosclerotic inflammatory memory called trained innate immunity. Here, we have analyzed the role of the Liver X receptor (LXR), a crucial regulator of metabolism and inflammation, in oxidized low-density lipoprotein (oxLDL)-induced trained innate immunity. Human monocytes were incubated with LXR agonists, antagonists, and oxLDL for 24 h. After five days of resting time, cells were restimulated with the TLR-2 agonist Pam3cys. OxLDL priming induced the expression of LXRα but not LXRß. Pharmacologic LXR activation was enhanced, while LXR inhibition prevented the oxLDL-induced inflammatory response. Furthermore, LXR inhibition blocked the metabolic changes necessary for epigenetic reprogramming associated with trained immunity. In fact, enrichment of activating histone marks at the IL-6 and TNFα promotor was reduced following LXR inhibition. Based on the differential expression of the LXR isoforms, we inhibited LXRα and LXRß genes using siRNA in THP1 cells. As expected, siRNA-mediated knock-down of LXRα blocked the oxLDL-induced inflammatory response, while knock-down of LXRß had no effect. We demonstrate a specific and novel role of the LXRα isoform in the regulation of oxLDL-induced trained immunity. Our data reveal important aspects of LXR signaling in innate immunity with relevance to atherosclerosis formation.


Asunto(s)
Lipoproteínas LDL , Receptores Nucleares Huérfanos , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Receptores Nucleares Huérfanos/genética , ARN Interferente Pequeño/metabolismo
3.
J Mol Cell Cardiol ; 146: 121-132, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32726647

RESUMEN

Trained innate immunity describes the metabolic reprogramming and long-term proinflammatory activation of innate immune cells in response to different pathogen or damage associated molecular patterns, such as oxidized low-density lipoprotein (oxLDL). Here, we have investigated whether the regulatory networks of trained innate immunity also control endothelial cell activation following oxLDL treatment. Human aortic endothelial cells (HAECs) were primed with oxLDL for 24 h. After a resting time of 4 days, cells were restimulated with the TLR2-agonist PAM3cys4. OxLDL priming induced a proinflammatory memory with increased production of inflammatory cytokines such as IL-6, IL-8 and MCP-1 in response to PAM3cys4 restimulation. This memory formation was dependent on TLR2 activation. Furthermore, oxLDL priming of HAECs caused characteristic metabolic and epigenetic reprogramming, including activation of mTOR-HIF1α-signaling with increases in glucose consumption and lactate production, as well as epigenetic modifications in inflammatory gene promoters. Inhibition of mTOR-HIF1α-signaling or histone methyltransferases blocked the observed phenotype. Furthermore, primed HAECs showed epigenetic activation of ICAM-1 and increased ICAM-1 expression in a HIF1α-dependent manner. Accordingly, live cell imaging revealed increased monocyte adhesion and transmigration following oxLDL priming. In summary, we demonstrate that oxLDL-mediated endothelial cell activation represents an immunologic event, which triggers metabolic and epigenetic reprogramming. Molecular mechanisms regulating trained innate immunity in innate immune cells also regulate this sustained proinflammatory phenotype in HAECs with enhanced atheroprone cell functions. Further research is necessary to elucidate the detailed metabolic regulation and the functional relevance for atherosclerosis formation in vivo.


Asunto(s)
Células Endoteliales/metabolismo , Memoria Inmunológica/efectos de los fármacos , Lipoproteínas LDL/farmacología , Aorta/metabolismo , Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación/patología , Monocitos/efectos de los fármacos , Fenotipo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/metabolismo
4.
Cancer Immunol Immunother ; 68(4): 661-672, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30357490

RESUMEN

Myeloid cells play a pivotal role in regulating innate and adaptive immune responses. In inflammation, autoimmunity, and after transplantation, myeloid cells have contrasting roles: on the one hand they initiate the immune response, promoting activation and expansion of effector T-cells, and on the other, they counter-regulate inflammation, maintain tissue homeostasis, and promote tolerance. The latter activities are mediated by several myeloid cells including polymorphonuclear neutrophils, macrophages, myeloid-derived suppressor cells, and dendritic cells. Since these cells have been associated with immune suppression and tolerance, they will be further referred to as myeloid regulatory cells (MRCs). In recent years, MRCs have emerged as a therapeutic target or have been regarded as a potential cellular therapeutic product for tolerance induction. However, several open questions must be addressed to enable the therapeutic application of MRCs including: how do they function at the site of inflammation, how to best target these cells to modulate their activities, and how to isolate or to generate pure populations for adoptive cell therapies. In this review, we will give an overview of the current knowledge on MRCs in inflammation, autoimmunity, and transplantation. We will discuss current strategies to target MRCs and to exploit their tolerogenic potential as a cell-based therapy.


Asunto(s)
Autoinmunidad , Homeostasis , Tolerancia Inmunológica , Inflamación/etiología , Inflamación/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Humanos , Inmunomodulación , Inmunofenotipificación , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Trasplante de Órganos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Trasplante Homólogo
5.
Cancer Immunol Immunother ; 68(4): 673-685, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30569204

RESUMEN

Many pathogens, ranging from viruses to multicellular parasites, promote expansion of MDSCs, which are myeloid cells that exhibit immunosuppressive features. The roles of MDSCs in infection depend on the class and virulence mechanisms of the pathogen, the stage of the disease, and the pathology associated with the infection. This work compiles evidence supported by functional assays on the roles of different subsets of MDSCs in acute and chronic infections, including pathogen-associated malignancies, and discusses strategies to modulate MDSC dynamics to benefit the host.


Asunto(s)
Enfermedades Transmisibles/etiología , Enfermedades Transmisibles/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Enfermedad Aguda , Animales , Biomarcadores , Enfermedad Crónica , Enfermedades Transmisibles/tratamiento farmacológico , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunomodulación , Terapia Molecular Dirigida , Células Supresoras de Origen Mieloide/efectos de los fármacos
6.
BMC Neurosci ; 19(1): 39, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29976152

RESUMEN

BACKGROUND: Tick-borne encephalitis (TBE) is the main tick-borne viral infection in Eurasia. Its manifestations range from inapparent infections and fevers with complete recovery to debilitating or fatal encephalitis. The basis of this heterogeneity is largely unknown, but part of this variation is likely due to host genetic. We have previously found that BALB/c mice exhibit intermediate susceptibility to the infection of TBE virus (TBEV), STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, carrying 12.5% of the STS genome on the background of the BALB/c genome is even more susceptible than BALB/c. Importantly, mouse orthologs of human TBE controlling genes Oas1b, Cd209, Tlr3, Ccr5, Ifnl3 and Il10, are in CcS-11 localized on segments derived from the strain BALB/c, so they are identical in BALB/c and CcS-11. As they cannot be responsible for the phenotypic difference of the two strains, we searched for the responsible STS-derived gene-locus. Of course the STS-derived genes in CcS-11 may operate through regulating or epigenetically modifying these non-polymorphic genes of BALB/c origin. METHODS: To determine the location of the STS genes responsible for susceptibility of CcS-11, we analyzed survival of TBEV-infected F2 hybrids between BALB/c and CcS-11. CcS-11 carries STS-derived segments on eight chromosomes. These were genotyped in the F2 hybrid mice and their linkage with survival was tested by binary trait interval mapping. We have sequenced genomes of BALB/c and STS using next generation sequencing and performed bioinformatics analysis of the chromosomal segment exhibiting linkage with TBEV survival. RESULTS: Linkage analysis revealed a novel suggestive survival-controlling locus on chromosome 7 linked to marker D7Nds5 (44.2 Mb). Analysis of this locus for polymorphisms between BALB/c and STS that change RNA stability and genes' functions led to detection of 9 potential candidate genes: Cd33, Klk1b22, Siglece, Klk1b16, Fut2, Grwd1, Abcc6, Otog, and Mkrn3. One of them, Cd33, carried a nonsense mutation in the STS strain. CONCLUSIONS: The robust genetic system of recombinant congenic strains of mice enabled detection of a novel suggestive locus on chromosome 7. This locus contains 9 candidate genes, which will be focus of future studies not only in mice but also in humans.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mapeo Cromosómico , Cromosomas Humanos Par 7/genética , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Virosis/mortalidad , Animales , Proteínas Portadoras/genética , Femenino , Genotipo , Humanos , Ratones
7.
Front Immunol ; 15: 1304696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469319

RESUMEN

Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.


Asunto(s)
Leishmaniasis Cutánea , Vacunas , Humanos , Linfocitos T CD4-Positivos , Células T de Memoria , Eficacia de las Vacunas , Biomarcadores
8.
Trends Mol Med ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937208

RESUMEN

The ability of the gut microbiome to adapt to a new environment and utilize a new metabolite or dietary compound by inducing structural variations (SVs) in the genome has an important role in human health. Here, we discuss recent data on host genetic regulation of SV induction and its use as a new therapeutic approach.

9.
STAR Protoc ; 5(1): 102776, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117658

RESUMEN

Non-immune cells, like innate immune cells, can develop a memory-like phenotype in response to priming with microbial compounds or certain metabolites, which enables an enhanced response to a secondary unspecific stimulus. This paper describes a step-by-step protocol for the induction and analysis of trained immunity in human endothelial and smooth muscle cells. We then describe steps for cell culture with cryopreserved vascular cells, subcultivation, and induction of trained immunity. We then provide detailed procedures for downstream analysis using ELISA and qPCR. For complete details on the use and execution of this protocol, please refer to Sohrabi et al. (2020)1 and Shcnack et al.2.


Asunto(s)
Células Endoteliales , Inmunidad Entrenada , Humanos , Técnicas de Cultivo de Célula , Ensayo de Inmunoadsorción Enzimática , Miocitos del Músculo Liso
10.
Front Immunol ; 14: 1145269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600780

RESUMEN

Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more than 1 billion people living in endemic countries and has three clinical forms: cutaneous, mucocutaneous, and visceral. Understanding of individual differences in susceptibility to infection and heterogeneity of its pathology is largely lacking. Different mouse strains show a broad and heterogeneous range of disease manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased serum levels of immunoglobulin E and several cytokines. Genome-wide mapping of these strain differences detected more than 30 quantitative trait loci (QTLs) that control the response to Leishmania major. Some control different combinations of disease manifestations, but the nature of this heterogeneity is not yet clear. In this study, we analyzed the L. major response locus Lmr15 originally mapped in the strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the genetic background of the susceptible strain BALB/c. For this analysis, we used the advanced intercross line K3FV between the strains BALB/c and STS. We confirmed the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32 and 17.4 Mbp, respectively, and analyzed their response to L. major infection. These experiments revealed at least two linked but functionally distinct chromosomal regions controlling IFNγ response and IgE response, respectively, in addition to the control of skin lesions. Bioinformatics and expression analysis identified the potential candidate gene Top3a. This finding further clarifies the genetic organization of factors relevant to understanding the differences in the individual risk of disease.


Asunto(s)
Leishmania major , Enfermedades de la Piel , Animales , Ratones , Leishmania major/genética , Interferón gamma/genética , Citocinas , Inmunoglobulina E
11.
Ageing Res Rev ; 92: 102122, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956927

RESUMEN

Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.


Asunto(s)
Envejecimiento , Rigidez Vascular , Humanos , Envejecimiento/metabolismo , Estrés Oxidativo , Senescencia Celular , Transducción de Señal
12.
Clin Transl Med ; 12(5): e831, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604877

RESUMEN

Tissue damage caused by an infection oran autoimmune disease triggers degradation of collagen in the extracellular matrix (ECM), which further enhances inflammation. Therefore, improving ECM in aninflamed tissue can be exploited as a potential therapeutic target. A recentstudy emphasised an innovative approach against COVID-19 using polymerised type I collagen (PTIC) that improves disease severity through a hitherto unknownmechanism. In this paper, we provide an overview of potential mechanism thatmay explain the anti-inflammatory effect of collagen peptides. In addition,the paper includes a brief summary of possible side effect of collagendeposition in inflammatory diseases. Altogether, current knowledge suggeststhat collagen may potentially reduce the residual risk in inflammatorydiseases; however, the detailed mechanism remains elusive.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Colágeno/metabolismo , Colágeno/farmacología , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacología , Matriz Extracelular/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
13.
Trends Mol Med ; 28(1): 1-4, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34865983

RESUMEN

Recent studies emphasize the importance of low-density lipoprotein cholesterol (LDL-C) in altering the hematopoietic cell compartment of bone marrow and of high-density lipoprotein cholesterol (HDL-C) in inhibiting metabolic endotoxemia-induced inflammation. The data suggest that these lipoproteins may exert their inflammatory or anti-inflammatory roles by modulating innate immune memory. Targeting specific LDL-C and HDL-C subfractions could therefore potentially reduce the residual risk in hepatic and cardiometabolic disease.


Asunto(s)
HDL-Colesterol , LDL-Colesterol , Inmunidad Innata , Memoria Inmunológica , Humanos , Inflamación
14.
Trends Endocrinol Metab ; 32(7): 420-422, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33875327

RESUMEN

Unhealthy lifestyles and dietary habits often lead to diet-associated inflammatory diseases such as obesity and atherosclerosis. Recent studies have provided novel insight into the role of RIPK1 in inflammation and metabolism. RIPK1 silencing can reduce diet-induced obesity, nonalcoholic fatty liver disease (NAFLD), and atherosclerosis by reducing inflammation, lipid synthesis, and inflammasome activation. Targeting RIPK1 may therefore attenuate chronic metabolic disease and would likely be therapeutic.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Aterosclerosis/prevención & control , Dieta Alta en Grasa , Humanos , Inflamación , Hígado , Obesidad , Proteína Serina-Treonina Quinasas de Interacción con Receptores
15.
Trends Endocrinol Metab ; 32(3): 132-134, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33455862

RESUMEN

Recent data have revealed that fructose-rich diet triggers inflammation and lipid synthesis. Furthermore, lipid metabolism, cholesterol synthesis and sterol regulatory element binding protein-2 (SREBP-2) activation correlates with coronavirus disease 2019 (COVID-19)-induced cytokine storm. High fructose consumption result in SREBPs activation, altered cholesterol and lipid synthesis and may establish an innate immune memory in the cells, leading to severe COVID-19 in patients with obesity.


Asunto(s)
COVID-19 , Lipogénesis , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Colesterol , Fructosa , Humanos , Inflamación , SARS-CoV-2 , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
16.
Med ; 2(4): 378-383, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649749

RESUMEN

Age is a key risk factor associated with the severity of symptoms caused by SARS-CoV-2, and there is an urgent need to reduce COVID-19 morbidity and mortality in elderly individuals. We discuss evidence suggesting that trained immunity elicited by BCG vaccination may improve immune responses and can serve as a strategy to combat COVID-19 in this population.


Asunto(s)
COVID-19 , Anciano , Humanos , Inmunidad Innata , Memoria Inmunológica , SARS-CoV-2 , Vacunación
17.
Front Immunol ; 12: 760881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154069

RESUMEN

Differences in frequencies of blood cell subpopulations were reported to influence the course of infections, atopic and autoimmune diseases, and cancer. We have discovered a unique mouse strain B10.O20 containing extremely high frequency of myeloid-derived cells (MDC) in spleen. B10.O20 carries 3.6% of genes of the strain O20 on the C57BL/10 genetic background. It contains much higher frequency of CD11b+Gr1+ cells in spleen than both its parents. B10.O20 carries O20-derived segments on chromosomes 1, 15, 17, and 18. Their linkage with frequencies of blood cell subpopulations in spleen was tested in F2 hybrids between B10.O20 and C57BL/10. We found 3 novel loci controlling MDC frequencies: Mydc1, 2, and 3 on chromosomes 1, 15, and 17, respectively, and a locus controlling relative spleen weight (Rsw1) that co-localizes with Mydc3 and also influences proportion of white and red pulp in spleen. Mydc1 controls numbers of CD11b+Gr1+ cells. Interaction of Mydc2 and Mydc3 regulates frequency of CD11b+Gr1+ cells and neutrophils (Gr1+Siglec-F- cells from CD11b+ cells). Interestingly, Mydc3/Rsw1 is orthologous with human segment 6q21 that was shown previously to determine counts of white blood cells. Bioinformatics analysis of genomic sequence of the chromosomal segments bearing these loci revealed polymorphisms between O20 and C57BL/10 that change RNA stability and genes' functions, and we examined expression of relevant genes. This identified potential candidate genes Smap1, Vps52, Tnxb, and Rab44. Definition of genetic control of MDC can help to personalize therapy of diseases influenced by these cells.


Asunto(s)
Células Mieloides/fisiología , Animales , Cromosomas/genética , Biología Computacional/métodos , Femenino , Ligamiento Genético/genética , Sitios Genéticos/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología , Polimorfismo Genético/genética , Estabilidad del ARN/genética , Bazo/fisiología
18.
Cancer Immunol Immunother ; 59(2): 203-13, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19655140

RESUMEN

Low infiltration of lymphocytes into cancers is associated with poor prognosis, but the reasons why some patients exhibit a low and others a high infiltration of tumors are unknown. Previously we mapped four loci (Lynf1­Lynf4) controlling lymphocyte infiltration of mouse lung tumors. These loci do not encode any of the molecules that are involved in traffic of lymphocytes. Here we report a genetic relationship between these loci and the control of production of IFNγ in allogeneic mixed lymphocyte cultures (MLC). We found that IFNγ production by lymphocytes of O20/A mice is lower than by lymphocytes of OcB-9/Dem mice (both H2pz) stimulated in MLC by irradiated splenocytes of C57BL/10SnPh (H2b) or BALB/ cHeA (H2d) mice, or by ConA. IFNγ production in MLCs of individual (O20 9 OcB-9)F2mice stimulated by irradiated C57BL/10 splenocytes and genotyped for microsatellite markers revealed four IFNγ-controlling loci (Cypr4-Cypr7), each of which is closely linked with one of the four Lynf loci and with a cluster of susceptibility genes for different tumors. This suggests that inherited differences in certain lymphocyte responses may modify their propensity to infiltrate tumors and their capacity to affect tumor growth.


Asunto(s)
Sitios Genéticos , Interferón gamma/biosíntesis , Isoantígenos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Animales , Mapeo Cromosómico , Femenino , Prueba de Cultivo Mixto de Linfocitos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes
19.
Clin Transl Immunology ; 9(12): e1228, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363733

RESUMEN

COVID-19 is a severe health problem in many countries and has altered day-to-day life in the whole world. This infection is caused by the SARS-CoV-2 virus, and depending on age, sex and health status of the patient, it can present with variety of clinical symptoms such as mild infection, a very severe form or even asymptomatic course of the disease. Similarly to other viruses, innate immune response plays a vital role in protection against COVID-19. However, dysregulation of innate immunity could have a significant influence on the severity of the disease. Despite various efforts, there is no effective vaccine against the disease so far. Recent data have demonstrated that the Bacillus Calmette-Guérin (BCG) vaccine could reduce disease severity and the burden of several infectious diseases in addition to targeting its primary focus tuberculosis. There is growing evidence for the concept of beneficial non-specific boosting of immune responses by BCG or other microbial compounds termed trained immunity, which may protect against COVID-19. In this manuscript, we review data on how the development of innate immune memory due to microbial compounds specifically BCG can result in protection against SARS-CoV-2 infection. We also discuss possible mechanisms, challenges and perspectives of using innate immunity as an approach to reduce COVID-19 severity.

20.
Int J Cardiol ; 308: 73-81, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31955977

RESUMEN

BACKGROUND: Diabetes mellitus is an important cardiovascular risk factor characterized by elevated plasma glucose levels. High glucose (HG) negatively influences endothelial cell (EC) function, which is characterized by the inability of ECs to respond to vascular endothelial growth factor (VEGF-A) stimulation. We aimed to identify potential strategies to improve EC function in diabetes. METHODS AND RESULTS: Human umbilical cord endothelial cells (HUVECs) were subjected to hyperglycemic milieu by exposing cells to HG together with glucose metabolite, methylglyoxal (MG) in vitro. Hyperglycemic cells showed reduced chemotactic responses towards VEGF-A as revealed by Boyden chamber migration assays, indicating the development of "VEGF resistance" phenotype. Furthermore, HG/MG-exposed cells were defective in their general migratory and proliferative responses and were in a pro-apoptotic state. Mechanistically, the exposure to HG/MG resulted in reactive oxygen species (ROS) accumulation which is secondary to the impairment of thioredoxin (Trx) activity in these cells. Pharmacological and genetic targeting of Trx recapitulated VEGF resistance. Functional supplementation of Trx using thioredoxin mimetic peptides (TMP) reversed the HG/MG-induced ROS generation, improved the migration, proliferation, survival and restored VEGF-A-induced chemotaxis and sprouting angiogenesis of hyperglycemic ECs. Importantly, TMP treatment reduced ROS accumulation and improved VEGF-A responses of placental arterial endothelial cells isolated from gestational diabetes mellitus patients. CONCLUSIONS: Our findings suggest a putative role for Trx in modulating EC function and its functional impairment in HG conditions contribute to EC dysfunction. Supplementation of TMP could be used as a novel strategy to improve endothelial cell function in diabetes.


Asunto(s)
Hiperglucemia , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Supervivencia Celular , Células Cultivadas , Células Endoteliales , Femenino , Humanos , Hiperglucemia/tratamiento farmacológico , Embarazo , Tiorredoxinas , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA