Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730853

RESUMEN

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Asunto(s)
Genoma de Protozoos , Estadios del Ciclo de Vida/genética , Hígado/metabolismo , Hígado/parasitología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/genética , Alelos , Amino Azúcares/biosíntesis , Animales , Culicidae/parasitología , Eritrocitos/parasitología , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Genotipo , Modelos Biológicos , Mutación/genética , Parásitos/genética , Parásitos/crecimiento & desarrollo , Fenotipo , Plasmodium berghei/metabolismo , Ploidias , Reproducción
2.
PLoS Pathog ; 20(6): e1011979, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900808

RESUMEN

The cell surface of Toxoplasma gondii is rich in glycoconjugates which hold diverse and vital functions in the lytic cycle of this obligate intracellular parasite. Additionally, the cyst wall of bradyzoites, that shields the persistent form responsible for chronic infection from the immune system, is heavily glycosylated. Formation of glycoconjugates relies on activated sugar nucleotides, such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The glucosamine-phosphate-N-acetyltransferase (GNA1) generates N-acetylglucosamine-6-phosphate critical to produce UDP-GlcNAc. Here, we demonstrate that downregulation of T. gondii GNA1 results in a severe reduction of UDP-GlcNAc and a concomitant drop in glycosylphosphatidylinositols (GPIs), leading to impairment of the parasite's ability to invade and replicate in the host cell. Surprisingly, attempts to rescue this defect through exogenous GlcNAc supplementation fail to completely restore these vital functions. In depth metabolomic analyses elucidate diverse causes underlying the failed rescue: utilization of GlcNAc is inefficient under glucose-replete conditions and fails to restore UDP-GlcNAc levels in GNA1-depleted parasites. In contrast, GlcNAc-supplementation under glucose-deplete conditions fully restores UDP-GlcNAc levels but fails to rescue the defects associated with GNA1 depletion. Our results underscore the importance of glucosamine-6-phosphate acetylation in governing T. gondii replication and invasion and highlight the potential of the evolutionary divergent GNA1 in Apicomplexa as a target for the development of much-needed new therapeutic strategies.


Asunto(s)
Acetilglucosamina , Glucosa-6-Fosfato , Toxoplasma , Toxoplasma/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato/análogos & derivados , Acetilglucosamina/metabolismo , Acetilación , Animales , Glucosamina 6-Fosfato N-Acetiltransferasa/metabolismo , Humanos , Glucosamina/metabolismo , Glucosamina/análogos & derivados , Ratones , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
3.
J Cell Sci ; 135(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35621049

RESUMEN

Acetyl-CoA participates in post-translational modification of proteins and in central carbon and lipid metabolism in several cell compartments. In mammals, acetyl-CoA transporter 1 (AT1, also known as SLC33A1) facilitates the flux of cytosolic acetyl-CoA into the endoplasmic reticulum (ER), enabling the acetylation of proteins of the secretory pathway, in concert with the activity of dedicated acetyltransferases such as NAT8. However, the involvement of the ER acetyl-CoA pool in acetylation of ER-transiting proteins in Apicomplexa is unknown. Here, we identified homologs of AT1 and NAT8 in Toxoplasma gondii and Plasmodium berghei parasites. Proteome-wide analyses revealed widespread N-terminal acetylation of secreted proteins in both species. Such extensive acetylation of N-terminally processed proteins has not been observed previously in any other organism. Deletion of AT1 homologs in both T. gondii and P. berghei resulted in considerable reductions in parasite fitness. In P. berghei, AT1 was found to be important for growth of asexual blood stages, production of female gametocytes and male gametocytogenesis, implying its requirement for parasite transmission. In the absence of AT1, lysine acetylation and N-terminal acetylation in T. gondii remained globally unaltered, suggesting an uncoupling between the role of AT1 in development and active acetylation occurring along the secretory pathway.


Asunto(s)
Parásitos , Toxoplasma , Acetilcoenzima A/metabolismo , Acetilación , Animales , Retículo Endoplásmico/metabolismo , Femenino , Masculino , Mamíferos/metabolismo , Parásitos/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
4.
PLoS Pathog ; 18(3): e1010438, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35325010

RESUMEN

Regulated microneme secretion governs motility, host cell invasion and egress in the obligate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynamics critically regulate microneme exocytosis. Despite its importance for the lytic cycle of these parasites, molecular mechanistic details about exocytosis are still missing. Some members of the P4-ATPases act as flippases, changing the phospholipid distribution by translocation from the outer to the inner leaflet of the membrane. Here, the localization and function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxoplasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control protein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane, essential for microneme exocytosis. This complex is responsible for flipping phosphatidylserine, which presumably acts as a lipid mediator for organelle fusion with the plasma membrane. Overall, this study points toward the importance of phosphatidylserine asymmetric distribution at the plasma membrane for microneme exocytosis.


Asunto(s)
Toxoplasma , Membrana Celular/metabolismo , Exocitosis , Micronema , Fosfatidilserinas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo
5.
PLoS Pathog ; 18(11): e1010955, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36395346

RESUMEN

Cyst-forming Apicomplexa (CFA) of the Sarcocystidae have a ubiquitous presence as pathogens of humans and farm animals transmitted through the food chain between hosts with few notable exceptions. The defining hallmark of this family of obligate intracellular protists consists of their ability to remain for very long periods as infectious tissue cysts in chronically infected intermediate hosts. Nevertheless, each closely related species has evolved unique strategies to maintain distinct reservoirs on global scales and ensuring efficient transmission to definitive hosts as well as between intermediate hosts. Here, we present an in-depth comparative mRNA expression analysis of the tachyzoite and bradyzoite stages of Besnoitia besnoiti strain Lisbon14 isolated from an infected farm animal based on its annotated genome sequence. The B. besnoiti genome is highly syntenic with that of other CFA and also retains the capacity to encode a large majority of known and inferred factors essential for completing a sexual cycle in a yet unknown definitive host. This work introduces Besnoitia besnoiti as a new model for comparative biology of coccidian tissue cysts which can be readily obtained in high purity. This model provides a framework for addressing fundamental questions about the evolution of tissue cysts and the biology of this pharmacologically intractable infectious parasite stage.


Asunto(s)
Besnoitia , Estadios del Ciclo de Vida , Animales , Humanos , Estadios del Ciclo de Vida/genética , Cadena Alimentaria , Expresión Génica
6.
Annu Rev Microbiol ; 73: 579-599, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31500539

RESUMEN

The Apicomplexa phylum includes a large group of obligate intracellular protozoan parasites responsible for important diseases in humans and animals. Toxoplasma gondii is a widespread parasite with considerable versatility, and it is capable of infecting virtually any warm-blooded animal, including humans. This outstanding success can be attributed at least in part to an efficient and continuous sensing of the environment, with a ready-to-adapt strategy. This review updates the current understanding of the signals governing the lytic cycle of T. gondii, with particular focus on egress from infected cells, a key step for balancing survival, multiplication, and spreading in the host. We cover the recent advances in the conceptual framework of regulation of microneme exocytosis that ensures egress, motility, and invasion. Particular emphasis is given to the trigger molecules and signaling cascades regulating exit from host cells.


Asunto(s)
Secreciones Corporales/parasitología , Interacciones Huésped-Parásitos/fisiología , Transducción de Señal , Toxoplasma , Actomiosina , Animales , Secreciones Corporales/metabolismo , Señalización del Calcio , Adhesión Celular , Movimiento Celular , Humanos , Proteínas Motoras Moleculares/metabolismo , Orgánulos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasma/ultraestructura
8.
PLoS Biol ; 19(3): e3001020, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705377

RESUMEN

Malaria is caused by unicellular Plasmodium parasites. Plasmodium relies on diverse microtubule cytoskeletal structures for its reproduction, multiplication, and dissemination. Due to the small size of this parasite, its cytoskeleton has been primarily observable by electron microscopy (EM). Here, we demonstrate that the nanoscale cytoskeleton organisation is within reach using ultrastructure expansion microscopy (U-ExM). In developing microgametocytes, U-ExM allows monitoring the dynamic assembly of axonemes and concomitant tubulin polyglutamylation in whole cells. In the invasive merozoite and ookinete forms, U-ExM unveils the diversity across Plasmodium stages and species of the subpellicular microtubule arrays that confer cell rigidity. In ookinetes, we additionally identify an apical tubulin ring (ATR) that colocalises with markers of the conoid in related apicomplexan parasites. This tubulin-containing structure was presumed to be lost in Plasmodium despite its crucial role in motility and invasion in other apicomplexans. Here, U-ExM reveals that a divergent and considerably reduced form of the conoid is actually conserved in Plasmodium species.


Asunto(s)
Citoesqueleto/ultraestructura , Microtúbulos/ultraestructura , Toxoplasma/ultraestructura , Animales , Citoesqueleto/metabolismo , Malaria/metabolismo , Malaria/parasitología , Microscopía Electrónica/métodos , Microtúbulos/metabolismo , Parásitos , Plasmodium/metabolismo , Plasmodium/patogenicidad , Plasmodium/ultraestructura , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Tubulina (Proteína)
9.
Mol Microbiol ; 118(6): 601-622, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36210525

RESUMEN

Virulence and persistence of the obligate intracellular parasite Toxoplasma gondii involve the secretion of effector proteins belonging to the family of dense granule proteins (GRAs) that act notably as modulators of the host defense mechanisms and participate in cyst wall formation. The subset of GRAs residing in the parasitophorous vacuole (PV) or exported into the host cell, undergo proteolytic cleavage in the Golgi upon the action of the aspartyl protease 5 (ASP5). In tachyzoites, ASP5 substrates play central roles in the morphology of the PV and the export of effectors across the translocon complex MYR1/2/3. Here, we used N-terminal amine isotopic labeling of substrates to identify novel ASP5 cleavage products by comparing the N-terminome of wild-type and Δasp5 lines in tachyzoites and bradyzoites. Validated substrates reside within the PV or PVM in an ASP5-dependent manner. Remarkably, Δasp5 bradyzoites are impaired in the formation of the cyst wall in vitro and exhibit a considerably reduced cyst burden in chronically infected animals. More specifically two-photon serial tomography of infected mouse brains revealed a comparatively reduced number and size of the cysts throughout the establishment of persistence in the absence of ASP5.


Asunto(s)
Proteasas de Ácido Aspártico , Toxoplasma , Animales , Ratones , Toxoplasma/metabolismo , Proteasas de Ácido Aspártico/metabolismo , Proteínas Protozoarias/metabolismo , Infección Persistente , Vacuolas/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo
10.
PLoS Pathog ; 17(12): e1010124, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34969059

RESUMEN

The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.


Asunto(s)
Antiparasitarios/farmacología , Apicomplexa/metabolismo , Apicomplexa/parasitología , Coenzima A/biosíntesis , Ácido Pantoténico/biosíntesis , Infecciones por Protozoos , Animales , Humanos
11.
Mol Microbiol ; 115(3): 453-465, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33368727

RESUMEN

Rhoptries are specialized secretory organelles found in the Apicomplexa phylum, playing a central role in the establishment of parasitism. The rhoptry content includes membranous as well as proteinaceous materials that are discharged into the host cell in a regulated fashion during parasite entry. A set of rhoptry neck proteins form a RON complex that critically participates in the moving junction formation during invasion. Some of the rhoptry bulb proteins are associated with the membranous materials and contribute to the formation of the parasitophorous vacuole membrane while others are targeted into the host cell including the nucleus to subvert cellular functions. Here, we review the recent studies on Toxoplasma and Plasmodium parasites that shed light on the key steps leading to rhoptry biogenesis, trafficking, and discharge.


Asunto(s)
Biogénesis de Organelos , Orgánulos/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidad , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Virulencia , Animales , Interacciones Huésped-Parásitos , Humanos , Malaria/parasitología , Orgánulos/ultraestructura , Plasmodium/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Toxoplasma/ultraestructura , Toxoplasmosis/parasitología
12.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29519896

RESUMEN

Toxoplasma gondii aspartyl protease 3 (TgASP3) phylogenetically clusters with Plasmodium falciparum Plasmepsins IX and X (PfPMIX, PfPMX). These proteases are essential for parasite survival, acting as key maturases for secreted proteins implicated in invasion and egress. A potent antimalarial peptidomimetic inhibitor (49c) originally developed against Plasmepsin II selectively targets TgASP3, PfPMIX, and PfPMX To unravel the molecular basis for the selectivity of 49c, we constructed homology models of PfPMIX, PfPMX, and TgASP3 that were first validated by identifying the determinants of microneme and rhoptry substrate recognition. The flap and flap-like structures of several reported Plasmepsins are highly flexible and critically modulate the access to the binding cavity. Molecular docking of 49c to TgASP3, PfPMIX, and PfPMX models predicted that the conserved phenylalanine residues in the flap, F344, F291, and F305, respectively, account for the sensitivity toward 49c. Concordantly, phenylalanine mutations in the flap of the three proteases increase twofold to 15-fold the IC50 values of 49c. Compellingly the selection of mutagenized T. gondii resistant strains to 49c reproducibly converted F344 to a cysteine residue.


Asunto(s)
Antimaláricos/farmacología , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Proteasas de Ácido Aspártico/metabolismo , Resistencia a Medicamentos/fisiología , Inhibidores de Proteasas/farmacología , Proteínas Protozoarias/química , Antimaláricos/química , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Cisteína , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/efectos de los fármacos , Concentración 50 Inhibidora , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutación , Pruebas de Sensibilidad Parasitaria , Fenilalanina/efectos de los fármacos , Fenilalanina/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Alineación de Secuencia , Toxoplasma/efectos de los fármacos , Toxoplasma/genética
13.
Cell Microbiol ; 23(2): e13278, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33040458

RESUMEN

Toxoplasma gondii infects virtually any nucleated cell and resides inside a non-phagocytic vacuole surrounded by a parasitophorous vacuolar membrane (PVM). Pivotal to the restriction of T. gondii dissemination upon infection in murine cells is the recruitment of immunity regulated GTPases (IRGs) and guanylate binding proteins (GBPs) to the PVM that leads to pathogen elimination. The virulent T. gondii type I RH strain secretes a handful of effectors including the dense granule protein GRA7, the serine-threonine kinases ROP17 and ROP18, and a pseudo-kinase ROP5, that synergistically inhibit the recruitment of IRGs to the PVM. Here, we characterise GRA60, a novel dense granule effector, which localises to the vacuolar space and PVM and contributes to virulence of RH in mice, suggesting a role in the subversion of host cell defence mechanisms. Members of the host cell IRG defence system Irgb10 and Irga6 are recruited to the PVM of RH parasites lacking GRA60 as observed previously for the avirulent RHΔrop5 mutant, with RH preventing such recruitment. Deletion of GRA60 in RHΔrop5 leads to a recruitment of IRGs comparable to the single knockouts. GRA60 therefore represents a novel parasite effector conferring resistance to IRGs in type I parasites, and found associated to ROP18, a member of the virulence complex.


Asunto(s)
Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Toxoplasma/inmunología , Toxoplasma/metabolismo , Toxoplasmosis/inmunología , Toxoplasmosis/metabolismo , Animales , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , ADN Protozoario , Fibroblastos/parasitología , Prepucio/parasitología , GTP Fosfohidrolasas/inmunología , GTP Fosfohidrolasas/metabolismo , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Humanos , Inmunidad , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Toxoplasma/genética , Vacuolas/metabolismo , Virulencia
14.
Traffic ; 20(8): 583-600, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206964

RESUMEN

To efficiently enter host cells, apicomplexan parasites such as Toxoplasma gondii rely on an apical complex composed of tubulin-based structures as well as two sets of secretory organelles named micronemes and rhoptries. The trafficking and docking of these organelles to the apical pole of the parasite is crucial for the discharge of their contents. Here, we describe two proteins typically associated with microtubules, Centrin 2 (CEN2) and Dynein Light Chain 8a (DLC8a), that are required for efficient host cell invasion. CEN2 localizes to four different compartments, and remarkably, conditional depletion of the protein occurs in stepwise manner, sequentially depleting the protein pools from each location. This phenomenon allowed us to discern the essential function of the apical pool of CEN2 for microneme secretion, motility, invasion and egress. DLC8a localizes to the conoid, and its depletion also perturbs microneme exocytosis in addition to the apical docking of the rhoptry organelles, causing a severe defect in host cell invasion. Phenotypic characterization of CEN2 and DLC8a indicates that while both proteins participate in microneme secretion, they likely act at different steps along the cascade of events leading to organelle exocytosis.


Asunto(s)
Dineínas/metabolismo , Exocitosis , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Dineínas/química , Transporte de Proteínas , Proteínas Protozoarias/química , Vesículas Secretoras/metabolismo , Combinación Trimetoprim y Sulfametoxazol/química
15.
J Biol Chem ; 295(3): 701-714, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31767680

RESUMEN

The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.


Asunto(s)
Apicomplexa/metabolismo , Coenzimas/metabolismo , Toxoplasmosis/metabolismo , Vitaminas/metabolismo , Apicomplexa/genética , Coenzimas/genética , Interacciones Huésped-Parásitos/genética , Humanos , Redes y Vías Metabólicas/genética , Biosíntesis de Proteínas/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Vitaminas/genética
16.
J Biol Chem ; 295(4): 1066-1076, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31862733

RESUMEN

C-Mannosylation is a common modification of thrombospondin type 1 repeats present in metazoans and recently identified also in apicomplexan parasites. This glycosylation is mediated by enzymes of the DPY19 family that transfer α-mannoses to tryptophan residues in the sequence WX2WX2C, which is part of the structurally essential tryptophan ladder. Here, deletion of the dpy19 gene in the parasite Toxoplasma gondii abolished C-mannosyltransferase activity and reduced levels of the micronemal protein MIC2. The loss of C-mannosyltransferase activity was associated with weakened parasite adhesion to host cells and with reduced parasite motility, host cell invasion, and parasite egress. Interestingly, the C-mannosyltransferase-deficient Δdpy19 parasites were strongly attenuated in virulence and induced protective immunity in mice. This parasite attenuation could not simply be explained by the decreased MIC2 level and strongly suggests that absence of C-mannosyltransferase activity leads to an insufficient level of additional proteins. In summary, our results indicate that T. gondii C-mannosyltransferase DPY19 is not essential for parasite survival, but is important for adhesion, motility, and virulence.


Asunto(s)
Interacciones Huésped-Parásitos , Manosa/metabolismo , Parásitos/patogenicidad , Proteínas Protozoarias/metabolismo , Toxoplasma/patogenicidad , Animales , Adhesión Celular , Movimiento Celular , Simulación por Computador , Femenino , Eliminación de Gen , Glicosilación , Interacciones Huésped-Parásitos/inmunología , Humanos , Masculino , Ratones , Parásitos/citología , Parásitos/inmunología , Proteolisis , Toxoplasma/citología , Toxoplasma/inmunología , Virulencia
17.
EMBO J ; 36(21): 3250-3267, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29030485

RESUMEN

Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1-3) and one regulatory (PKAr) subunits to integrate cAMP-dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down-regulation of PKAc1 or stabilisation of a dominant-negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP-phosphodiesterase. Concordantly, inhibition of the cGMP-dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP-phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Interacciones Huésped-Parásitos , Proteínas Protozoarias/genética , Toxoplasma/genética , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Acilación , Línea Celular Transformada , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fibroblastos/parasitología , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Estadios del Ciclo de Vida/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Protozoarias/metabolismo , Transducción de Señal , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo
18.
PLoS Pathog ; 15(5): e1007670, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31121005

RESUMEN

To elicit effective invasion and egress from infected cells, obligate intracellular parasites of the phylum Apicomplexa rely on the timely and spatially controlled exocytosis of specialized secretory organelles termed the micronemes. The effector molecules and signaling events underpinning this process are intricate; however, recent advances within the field of Toxoplasma gondii research have facilitated a broader understanding as well as a more integrated view of this complex cascade of events and have unraveled the importance of phosphatidic acid (PA) as a lipid mediator at multiple steps in this process.


Asunto(s)
Calcio/metabolismo , GMP Cíclico/metabolismo , Exocitosis/fisiología , Orgánulos/metabolismo , Ácidos Fosfatidicos/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Animales , Interacciones Huésped-Parásitos , Humanos , Orgánulos/parasitología , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Transducción de Señal
19.
PLoS Pathog ; 15(6): e1007871, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226171

RESUMEN

Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Macrófagos/inmunología , Proteínas Protozoarias/inmunología , Ácidos Siálicos/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Animales , Interleucina-12/inmunología , Ratones , Ratones Noqueados , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Toxoplasmosis Animal/genética
20.
Immunity ; 37(2): 302-13, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22795875

RESUMEN

Interferon-γ (IFN-γ) is essential for host defense against intracellular pathogens. Stimulation of innate immune cells by IFN-γ upregulates ∼2,000 effector genes such as immunity-related GTPases including p65 guanylate-binding protein (Gbp) family genes. We show that a cluster of Gbp genes was required for host cellular immunity against the intracellular parasite Toxoplasma gondii. We generated mice deficient for all six Gbp genes located on chromosome 3 (Gbp(chr3)) by targeted chromosome engineering. Mice lacking Gbp(chr3) were highly susceptible to T. gondii infection, resulting in increased parasite burden in immune organs. Furthermore, Gbp(chr3)-deleted macrophages were defective in IFN-γ-mediated suppression of T. gondii intracellular growth and recruitment of IFN-γ-inducible p47 GTPase Irgb6 to the parasitophorous vacuole. In addition, some members of Gbp(chr3) restored the protective response against T. gondii in Gbp(chr3)-deleted cells. Our results suggest that Gbp(chr3) play a pivotal role in anti-T. gondii host defense by controlling IFN-γ-mediated Irgb6-dependent cellular innate immunity.


Asunto(s)
Proteínas de Unión al GTP/inmunología , Inmunidad Innata/inmunología , Interferón gamma/inmunología , Macrófagos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Cromosomas de los Mamíferos/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Inmunidad Celular/inmunología , Interferón gamma/antagonistas & inhibidores , Interferón gamma/metabolismo , Listeria monocytogenes/inmunología , Mediciones Luminiscentes , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Óxido Nítrico/metabolismo , Toxoplasma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA