Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429579

RESUMEN

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Asunto(s)
Epilepsia , Cara/anomalías , Dedos/anomalías , Trastornos del Crecimiento , Hipogonadismo , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Obesidad , Humanos , Ratones , Animales , Discapacidad Intelectual/genética , Proteínas Represoras , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Transcripción
2.
Crit Rev Biochem Mol Biol ; 56(3): 284-300, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823731

RESUMEN

Muscle stem cells (MuSCs) also called satellite cells are the building blocks of skeletal muscle, the largest tissue in the human body which is formed primarily of myofibers. While MuSCs are the principal cells that directly contribute to the formation of the muscle fibers, their ability to do so depends on critical interactions with a vast array of nonmyogenic cells within their niche environment. Therefore, understanding the nature of communication between MuSCs and their niche is of key importance to understand how the skeletal muscle is maintained and regenerated after injury. MuSCs are rare and therefore difficult to study in vivo within the context of their niche environment. The advent of single-cell technologies, such as switching mechanism at 5' end of the RNA template (SMART) and tagmentation based technologies using hyperactive transposase, afford the unprecedented opportunity to perform whole transcriptome and epigenome studies on rare cells within their niche environment. In this review, we will delve into how single-cell technologies can be applied to the study of MuSCs and muscle-resident niche cells and the impact this can have on our understanding of MuSC biology and skeletal muscle regeneration.


Asunto(s)
Epigenoma , Estudio de Asociación del Genoma Completo , Mioblastos Esqueléticos/fisiología , Regeneración , Análisis de la Célula Individual , Nicho de Células Madre , Transcriptoma , Animales , Humanos
3.
EMBO Rep ; 21(12): e49499, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33047485

RESUMEN

The function and maintenance of muscle stem cells (MuSCs) are tightly regulated by signals originating from their niche environment. Skeletal myofibers are a principle component of the MuSC niche and are in direct contact with the muscle stem cells. Here, we show that Myf6 establishes a ligand/receptor interaction between muscle stem cells and their associated muscle fibers. Our data show that Myf6 transcriptionally regulates a broad spectrum of myokines and muscle-secreted proteins in skeletal myofibers, including EGF. EGFR signaling blocks p38 MAP kinase-induced differentiation of muscle stem cells. Homozygous deletion of Myf6 causes a significant reduction in the ability of muscle to produce EGF, leading to a deregulation in EGFR signaling. Consequently, although Myf6-knockout mice are born with a normal muscle stem cell compartment, they undergo a progressive reduction in their stem cell pool during postnatal life due to spontaneous exit from quiescence. Taken together, our data uncover a novel role for Myf6 in promoting the expression of key myokines, such as EGF, in the muscle fiber which prevents muscle stem cell exhaustion by blocking their premature differentiation.


Asunto(s)
Factores Reguladores Miogénicos , Células Madre , Animales , Diferenciación Celular/genética , Homocigoto , Ratones , Músculo Esquelético , Factores Reguladores Miogénicos/genética , Eliminación de Secuencia
4.
J Biol Chem ; 294(52): 20097-20108, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31753917

RESUMEN

Skeletal muscle is a heterogeneous tissue. Individual myofibers that make up muscle tissue exhibit variation in their metabolic and contractile properties. Although biochemical and histological assays are available to study myofiber heterogeneity, efficient methods to analyze the whole transcriptome of individual myofibers are lacking. Here, we report on a single-myofiber RNA-sequencing (smfRNA-Seq) approach to analyze the whole transcriptome of individual myofibers by combining single-fiber isolation with Switching Mechanism at 5' end of RNA Template (SMART) technology. Using smfRNA-Seq, we first determined the genes that are expressed in the whole muscle, including in nonmyogenic cells. We also analyzed the differences in the transcriptome of myofibers from young and old mice to validate the effectiveness of this new method. Our results suggest that aging leads to significant changes in the expression of metabolic genes, such as Nos1, and structural genes, such as Myl1, in myofibers. We conclude that smfRNA-Seq is a powerful tool to study developmental, disease-related, and age-related changes in the gene expression profile of skeletal muscle.


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN Mensajero/metabolismo , Envejecimiento , Animales , Separación Celular/métodos , Biblioteca de Genes , Genoma , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/química , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Transcriptoma
5.
Mol Cell ; 47(3): 457-68, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22771117

RESUMEN

In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-Seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex binds and excludes MyoD from its targets. Notably, Snail binds E box motifs that are G/C rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevent MyoD occupancy on differentiation-specific regulatory elements, and the change from Snail to MyoD binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving myogenic regulatory factors (MRFs), Snai1/2, miR-30a, and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells.


Asunto(s)
Elementos de Facilitación Genéticos/fisiología , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Mioblastos Esqueléticos/fisiología , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular/genética , Ratones , Datos de Secuencia Molecular , Proteína MioD/química , Proteína MioD/genética , Mioblastos Esqueléticos/citología , Cultivo Primario de Células , Unión Proteica/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/fisiología
6.
Nucleic Acids Res ; 46(14): 7221-7235, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30016497

RESUMEN

Muscle-specific transcription factor MyoD orchestrates the myogenic gene expression program by binding to short DNA motifs called E-boxes within myogenic cis-regulatory elements (CREs). Genome-wide analyses of MyoD cistrome by chromatin immnunoprecipitation sequencing shows that MyoD-bound CREs contain multiple E-boxes of various sequences. However, how E-box numbers, sequences and their spatial arrangement within CREs collectively regulate the binding affinity and transcriptional activity of MyoD remain largely unknown. Here, by an integrative analysis of MyoD cistrome combined with genome-wide analysis of key regulatory histones and gene expression data we show that the affinity landscape of MyoD is driven by multiple E-boxes, and that the overall binding affinity-and associated nucleosome positioning and epigenetic features of the CREs-crucially depend on the variant sequences and positioning of the E-boxes within the CREs. By comparative genomic analysis of single nucleotide polymorphism (SNPs) across publicly available data from 17 strains of laboratory mice, we show that variant sequences within the MyoD-bound motifs, but not their genome-wide counterparts, are under selection. At last, we show that the quantitative regulatory effect of MyoD binding on the nearby genes can, in part, be predicted by the motif composition of the CREs to which it binds. Taken together, our data suggest that motif numbers, sequences and their spatial arrangement within the myogenic CREs are important determinants of the cis-regulatory code of myogenic CREs.


Asunto(s)
Elementos E-Box/genética , Desarrollo de Músculos/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Transcripción Genética/genética , Activación Transcripcional/genética , Animales , Secuencia de Bases/genética , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Expresión Génica/genética , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ratones , Desarrollo de Músculos/fisiología , Motivos de Nucleótidos/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética
7.
iScience ; 27(7): 110241, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39015146

RESUMEN

Adult stem cells play a critical role in tissue repair and maintenance. In tissues with slow turnover, including skeletal muscle, these cells are maintained in a mitotically quiescent state yet remain poised to re-enter the cell cycle to replenish themselves and regenerate the tissue. Using a panomics approach we show that the PAX7/NEDD4L axis acts against muscle stem cell activation in homeostatic skeletal muscle. Our findings suggest that PAX7 transcriptionally activates the E3 ubiquitin ligase Nedd4L and that the conditional genetic deletion of Nedd4L impairs muscle stem cell quiescence, with an upregulation of cell cycle and myogenic differentiation genes. Loss of Nedd4L in muscle stem cells results in the expression of doublecortin (DCX), which is exclusively expressed during their in vivo activation. Together, these data establish that the ubiquitin proteasome system, mediated by Nedd4L, is a key contributor to the muscle stem cell quiescent state in adult mice.

8.
Curr Protoc ; 3(8): e877, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37638781

RESUMEN

Adult stem cells play a critical role in the maintenance and repair of the organs in which they reside. However, their function is highly dependent on the crosstalk with their niche environment that changes during development and in disease states. The niche provides signals to stem cells to activate, proliferate, self-renew, or remain in quiescence. In skeletal muscle, the niche is perturbed in disease contexts such as aging, muscular dystrophies, and cachexia. Therefore, it is important to develop methods that permit the decoupling of niche-mediated from cell-intrinsic changes that occur in muscle stem cells (MuSCs) in development and disease contexts. With the purpose of determining the effect of the niche environment on the MuSC transcriptome, function, or health, we have coupled an allogeneic stem cell transplantation system, meaning the transplantation of MuSCs from a donor mouse into a recipient host mouse, with Switching Mechanism at 5' End of RNA Template (SMART-Seq) to quantify the effects of the niche on the MuSC transcriptome in vivo. Briefly, MuSCs are isolated from a GFP reporter donor mouse (Pax7-nGFP) and transplanted into the irradiated muscles of immunocompromised allogeneic hosts. The MuSCs are re-isolated by fluorescence-activated cell sorting (FACS) after three weeks of inhabiting the heterologous niche, defined as a niche that is different from their originating niche, and sequencing-ready libraries are created. This method allows for the direct comparison of the transcriptome of stem cells before and after transplantation into a host of a different age, disease status, or genetic background. This method can be used to accurately quantify the direct effect of the niche environment on the stem cell gene expression profile and to decouple cell-intrinsic versus niche-mediated alterations in the stem cell transcriptome. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Allogeneic muscle stem cell transplantation.


Asunto(s)
Células Madre Adultas , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético , Donantes de Tejidos
9.
FEBS J ; 290(5): 1267-1289, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35029021

RESUMEN

Muscle stem cells (MuSCs) are required for life-long muscle regeneration. In general, aging has been linked to a decline in the numbers and the regenerative potential of MuSCs. Muscle regeneration depends on the proper functioning of MuSCs, which is itself dependent on intricate interactions with its niche components. Aging is associated with both cell-intrinsic and niche-mediated changes, which can be the result of transcriptional, posttranscriptional, or posttranslational alterations in MuSCs or in the components of their niche. The interplay between cell intrinsic alterations in MuSCs and changes in the stem cell niche environment during aging and its impact on the number and the function of MuSCs is an important emerging area of research. In this review, we discuss whether the decline in the regenerative potential of MuSCs with age is the cause or the consequence of aging skeletal muscle. Understanding the effect of aging on MuSCs and the individual components of their niche is critical to develop effective therapeutic approaches to diminish or reverse the age-related defects in muscle regeneration.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Músculo Esquelético/fisiología , Células Madre , Regeneración/fisiología
10.
Nat Commun ; 14(1): 535, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726011

RESUMEN

Adult stem cells are indispensable for tissue regeneration, but their function declines with age. The niche environment in which the stem cells reside plays a critical role in their function. However, quantification of the niche effect on stem cell function is lacking. Using muscle stem cells (MuSC) as a model, we show that aging leads to a significant transcriptomic shift in their subpopulations accompanied by locus-specific gain and loss of chromatin accessibility and DNA methylation. By combining in vivo MuSC transplantation and computational methods, we show that the expression of approximately half of all age-altered genes in MuSCs from aged male mice can be restored by exposure to a young niche environment. While there is a correlation between gene reversibility and epigenetic alterations, restoration of gene expression occurs primarily at the level of transcription. The stem cell niche environment therefore represents an important therapeutic target to enhance tissue regeneration in aging.


Asunto(s)
Células Madre Adultas , Músculo Esquelético , Masculino , Ratones , Animales , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas , Células Madre/metabolismo , Envejecimiento/fisiología
11.
Methods Mol Biol ; 2515: 343-354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776362

RESUMEN

The generation of new neurons in the adult brain throughout life is integral to brain plasticity and repair. Adult neural stem cells (aNSCs), present in the subventricular zone (SVZ) of the lateral ventricle wall and the subgranular zone (SGZ) of the hippocampal dentate gyrus, divide symmetrically or asymmetrically to maintain the stem cell pool or become committed progenitors and differentiate into various cell lineages. Depletion or dysregulation of aNSCs impairs proper brain connectivity and function and can contribute to several brain diseases including cognitive and neurodegenerative disorders and brain cancer. In this chapter, we present our optimized method to obtain and maintain reproducible neurosphere cultures from the adult mouse brain followed by evaluation of self-renewal using the extreme limiting dilution assay (ELDA) software. We use this assay routinely on aNSCs obtained from patient mouse models to generate log fraction plots and provide confidence intervals for all limiting dilution assay (LDA) data. At the same time, given the low number of NSCs required for the completion of the ELDA experiment, it is feasible to employ this approach to conduct high-content compound screening for therapeutic interventions aimed at enhancing the stem cell pool or combating a cohort of genetic and epigenetic disorders.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Encéfalo , Humanos , Ventrículos Laterales , Ratones , Neuronas
12.
Bio Protoc ; 12(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35990589

RESUMEN

Chromatin accessibility is a key determinant of gene expression that can be altered under different physiological and disease conditions. Skeletal muscle is made up of myofibers that are highly plastic and adaptive. Therefore, assessing the genome-wide chromatin state of myofibers under various conditions is very important to gain insight into the epigenetic state of myonuclei. The rigid nature of myofibers, as well as the low number of myonuclei that they contain, have rendered genome-wide studies with myofibers challenging. In recent years, ATAC-Seq from whole muscle and single nucleus ATAC-Seq have been performed. However, these techniques cannot distinguish between different fiber and cell types present in the muscle. In addition, due to the limited depth capacity obtained from single nucleus ATAC-Seq, an extensive comparative analysis cannot be performed. Here, we introduce a protocol where we combine the isolation of a single myofiber with OMNI ATAC-Seq. This protocol allows for genome-wide analysis of accessible chromatin regions of a selected single myofiber at a sufficient depth for comparative analysis under various physiological and disease conditions. This protocol can also allow for a specific myofiber to be selected, such as a regenerating myofiber. In the future, this protocol can help identify global changes in chromatin state under various conditions, as well as between different types of myofibers. Graphical abstract.

13.
STAR Protoc ; 3(3): 101554, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35880130

RESUMEN

Improper or aberrant protein-protein interactions can lead to severe human diseases including cancer. Here, we describe an adapted proximity ligation assay (PLA) protocol for the assessment of galectin-1-HOXA5 interaction in brain tumor stem cells (BTSCs). We detail the steps for culturing and preparation of BTSCs followed by PLA and detection of protein interactions in situ using fluorescent microscopy. This PLA protocol is optimized specifically for BTSCs and includes key controls for effective result analysis. For complete details on the use and execution of this protocol, please refer to Sharanek et al. (2021).


Asunto(s)
Encéfalo , Mapeo de Interacción de Proteínas , Humanos , Microscopía Fluorescente/métodos , Células Madre Neoplásicas , Mapeo de Interacción de Proteínas/métodos
14.
Methods Cell Biol ; 170: 47-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811103

RESUMEN

Brain tumor stem cells (BTSCs) are a rare population of self-renewing stem cells that are cultured as spheres and are often slow growing compared to other mammalian cell lines. Analysis of BTSC proteome requires careful handling as well as techniques that can be applied to small quantities of cell material. Subcellular fractionation is a widely used technique to assess protein localization. Although proteins are often destined to a defined cell compartment via a signal peptide such as mitochondrial or nuclear localization signals, the recruitment of a protein from one compartment to another can occur as a result of post-translational modification and/or structural variations in response to intracellular and extracellular stimuli. These events assign different functions to a protein making the study of protein localization a useful approach for better understanding of its role in disease progression. Sequential centrifugation remains a simple and versatile fractionation method for proteomic analysis. It can also be applied for diverse downstream applications such as multi-omics using pure nuclear fractions or metabolomic studies on isolated mitochondria. In this chapter, we describe our optimized protocol for subcellular fractionation of BTSC spheres in which we use a commercially available kit with additional centrifugation steps. We provide details on BTSC maintenance and handling, fractionation protocol and evaluation of fraction purity.


Asunto(s)
Células Madre Neoplásicas , Proteómica , Animales , Encéfalo/metabolismo , Fraccionamiento Celular/métodos , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Células Madre Neoplásicas/patología , Proteoma/metabolismo , Proteómica/métodos , Fracciones Subcelulares/metabolismo
15.
Elife ; 112022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188098

RESUMEN

Myofibers are the main components of skeletal muscle, which is the largest tissue in the body. Myofibers are highly adaptive and can be altered under different biological and disease conditions. Therefore, transcriptional and epigenetic studies on myofibers are crucial to discover how chromatin alterations occur in the skeletal muscle under different conditions. However, due to the heterogenous nature of skeletal muscle, studying myofibers in isolation proves to be a challenging task. Single-cell sequencing has permitted the study of the epigenome of isolated myonuclei. While this provides sequencing with high dimensionality, the sequencing depth is lacking, which makes comparisons between different biological conditions difficult. Here, we report the first implementation of single myofiber ATAC-Seq, which allows for the sequencing of an individual myofiber at a depth sufficient for peak calling and for comparative analysis of chromatin accessibility under various physiological and disease conditions. Application of this technique revealed significant differences in chromatin accessibility between resting and regenerating myofibers, as well as between myofibers from a mouse model of Duchenne Muscular Dystrophy (mdx) and wild-type (WT) counterparts. This technique can lead to a wide application in the identification of chromatin regulatory elements and epigenetic mechanisms in muscle fibers during development and in muscle-wasting diseases.


Asunto(s)
Cromatina , Distrofia Muscular de Duchenne , Animales , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas , Músculo Esquelético
16.
Cell Rep ; 36(9): 109647, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469737

RESUMEN

Brain tumor stem cells (BTSCs) and intratumoral heterogeneity represent major challenges in glioblastoma therapy. Here, we report that the LGALS1 gene, encoding the carbohydrate binding protein, galectin1, is a key regulator of BTSCs and glioblastoma resistance to therapy. Genetic deletion of LGALS1 alters BTSC gene expression profiles and results in downregulation of gene sets associated with the mesenchymal subtype of glioblastoma. Using a combination of pharmacological and genetic approaches, we establish that inhibition of LGALS1 signaling in BTSCs impairs self-renewal, suppresses tumorigenesis, prolongs lifespan, and improves glioblastoma response to ionizing radiation in preclinical animal models. Mechanistically, we show that LGALS1 is a direct transcriptional target of STAT3 with its expression robustly regulated by the ligand OSM. Importantly, we establish that galectin1 forms a complex with the transcription factor HOXA5 to reprogram the BTSC transcriptional landscape. Our data unravel an oncogenic signaling pathway by which the galectin1/HOXA5 complex maintains BTSCs and promotes glioblastoma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Galectina 1/metabolismo , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Transcripción Genética , Anciano , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Calixarenos/farmacología , Línea Celular Tumoral , Proliferación Celular , Autorrenovación de las Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Galectina 1/antagonistas & inhibidores , Galectina 1/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/radioterapia , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones SCID , Persona de Mediana Edad , Mutación , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Tolerancia a Radiación , Fármacos Sensibilizantes a Radiaciones/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Bio Protoc ; 10(4): e3525, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654749

RESUMEN

Whole transcriptome analysis is a key method in biology that allows researchers to determine the effect a condition has on gene regulation. One difficulty in RNA sequencing of muscle is that traditional methods are performed on the whole muscle, but this captures non-myogenic cells that are part of the muscle. In order to analyze only the transcriptome of myofibers we combine single myofiber isolation with SMART-Seq to provide high resolution genome wide expression of a single myofiber.

18.
Nat Commun ; 11(1): 4116, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807793

RESUMEN

Glioblastoma contains a rare population of self-renewing brain tumor stem cells (BTSCs) which are endowed with properties to proliferate, spur the growth of new tumors, and at the same time, evade ionizing radiation (IR) and chemotherapy. However, the drivers of BTSC resistance to therapy remain unknown. The cytokine receptor for oncostatin M (OSMR) regulates BTSC proliferation and glioblastoma tumorigenesis. Here, we report our discovery of a mitochondrial OSMR that confers resistance to IR via regulation of oxidative phosphorylation, independent of its role in cell proliferation. Mechanistically, OSMR is targeted to the mitochondrial matrix via the presequence translocase-associated motor complex components, mtHSP70 and TIM44. OSMR interacts with NADH ubiquinone oxidoreductase 1/2 (NDUFS1/2) of complex I and promotes mitochondrial respiration. Deletion of OSMR impairs spare respiratory capacity, increases reactive oxygen species, and sensitizes BTSCs to IR-induced cell death. Importantly, suppression of OSMR improves glioblastoma response to IR and prolongs lifespan.


Asunto(s)
Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Radiación Ionizante , Receptores de Oncostatina M/metabolismo , Animales , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Ratones , Ratones SCID , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Células Madre Neoplásicas/efectos de la radiación , Oncostatina M/metabolismo , Estrés Oxidativo/efectos de la radiación , Receptores de Oncostatina M/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de la radiación
19.
Nat Neurosci ; 19(6): 798-806, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110918

RESUMEN

EGFRvIII-STAT3 signaling is important in glioblastoma pathogenesis. Here, we identified the cytokine receptor OSMR as a direct target gene of the transcription factor STAT3 in mouse astrocytes and human brain tumor stem cells (BTSCs). We found that OSMR functioned as an essential co-receptor for EGFRvIII. OSMR formed a physical complex with EGFRvIII, and depletion of OSMR impaired EGFRvIII-STAT3 signaling. Conversely, pharmacological inhibition of EGFRvIII phosphorylation inhibited the EGFRvIII-OSMR interaction and activation of STAT3. EGFRvIII-OSMR signaling in tumors operated constitutively, whereas EGFR-OSMR signaling in nontumor cells was synergistically activated by the ligands EGF and OSM. Finally, knockdown of OSMR strongly suppressed cell proliferation and tumor growth of mouse glioblastoma cells and human BTSC xenografts in mice, and prolonged the lifespan of these mice. Our findings identify OSMR as a critical regulator of glioblastoma tumor growth that orchestrates a feed-forward signaling mechanism with EGFRvIII and STAT3 to drive tumorigenesis.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Transformación Celular Neoplásica/metabolismo , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Transducción de Señal/fisiología , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones Transgénicos , Trasplante de Neoplasias/métodos , Factor de Transcripción STAT3/metabolismo
20.
Skelet Muscle ; 5: 14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25949788

RESUMEN

BACKGROUND: Adult skeletal muscle regeneration is a highly orchestrated process involving the activation and proliferation of satellite cells, an adult skeletal muscle stem cell. Activated satellite cells generate a transient amplifying progenitor pool of myoblasts that commit to differentiation and fuse into multinucleated myotubes. During regeneration, canonical Wnt signalling is activated and has been implicated in regulating myogenic lineage progression and terminal differentiation. METHODS: Here, we have undertaken a gene expression analysis of committed satellite cell-derived myoblasts to examine their ability to respond to canonical Wnt/ß-catenin signalling. RESULTS: We found that activation of canonical Wnt signalling induces follistatin expression in myoblasts and promotes myoblast fusion in a follistatin-dependent manner. In growth conditions, canonical Wnt/ß-catenin signalling prime myoblasts for myogenic differentiation by stimulating myogenin and follistatin expression. We further found that myogenin binds elements in the follistatin promoter and thus acts downstream of myogenin during differentiation. Finally, ectopic activation of canonical Wnt signalling in vivo promoted premature differentiation during muscle regeneration following acute injury. CONCLUSIONS: Together, these data reveal a novel mechanism by which myogenin mediates the canonical Wnt/ß-catenin-dependent activation of follistatin and induction of the myogenic differentiation process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA