Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(27): E6245-E6253, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915081

RESUMEN

Microsporidia are parasitic fungi-like organisms that invade the interior of living cells and cause chronic disorders in a broad range of animals, including humans. These pathogens have the tiniest known genomes among eukaryotic species, for which they serve as a model for exploring the phenomenon of genome reduction in obligate intracellular parasites. Here we report a case study to show an apparent effect of overall genome reduction on the primary structure and activity of aminoacyl-tRNA synthetases, indispensable cellular proteins required for protein synthesis. We find that most microsporidian synthetases lack regulatory and eukaryote-specific appended domains and have a high degree of sequence variability in tRNA-binding and catalytic domains. In one synthetase, LeuRS, an apparent sequence degeneration annihilates the editing domain, a catalytic center responsible for the accurate selection of leucine for protein synthesis. Unlike accurate LeuRS synthetases from other eukaryotic species, microsporidian LeuRS is error-prone: apart from leucine, it occasionally uses its near-cognate substrates, such as norvaline, isoleucine, valine, and methionine. Mass spectrometry analysis of the microsporidium Vavraia culicis proteome reveals that nearly 6% of leucine residues are erroneously replaced by other amino acids. This remarkably high frequency of mistranslation is not limited to leucine codons and appears to be a general property of protein synthesis in microsporidian parasites. Taken together, our findings reveal that the microsporidian protein synthesis machinery is editing-deficient, and that the proteome of microsporidian parasites is more diverse than would be anticipated based on their genome sequences.


Asunto(s)
Aminoacil-ARNt Sintetasas , Proteínas Fúngicas , Genoma Fúngico , Microsporida , Biosíntesis de Proteínas/fisiología , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Microsporida/genética , Microsporida/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
2.
EMBO J ; 30(9): 1818-29, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21460798

RESUMEN

The anaphase promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators by the 26S proteasome. Cdc20 and Cdh1 are WD40-containing APC co-activators that bind destruction boxes (DB) and KEN boxes within substrates to recruit them to the APC for ubiquitination. Acm1 is an APC(Cdh1) inhibitor that utilizes a DB and a KEN box to bind Cdh1 and prevent substrate binding, although Acm1 itself is not a substrate. We investigated what differentiates an APC substrate from an inhibitor. We identified the Acm1 A-motif that interacts with Cdh1 and together with the DB and KEN box is required for APC(Cdh1) inhibition. A genetic screen identified Cdh1 WD40 domain residues important for Acm1 A-motif interaction and inhibition that appears to reside near Cdh1 residues important for DB recognition. Specific lysine insertion mutations within Acm1 promoted its ubiquitination by APC(Cdh1) whereas lysine removal from the APC substrate Hsl1 converted it into a potent APC(Cdh1) inhibitor. These findings suggest that tight Cdh1 binding combined with the inaccessibility of ubiquitinatable lysines contributes to pseudosubstrate inhibition of APC(Cdh1).


Asunto(s)
Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/metabolismo , Mutagénesis , Plásmidos/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitinación
3.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005361

RESUMEN

The Anaphase-Promoting Complex/Cyclosome (APC/C) is a ubiquitin ligase that promotes the ubiquitination and subsequent degradation of numerous cell cycle regulators during mitosis and in G1. Proteins are recruited to the APC/C by activator proteins such as Cdh1. During the cell cycle, Cdh1 is subject to precise regulation so that substrates are not degraded prematurely. We have explored the regulation of Cdh1 during the developmental transition into meiosis and sporulation in the budding yeast S. cerevisiae. Transition to sporulation medium triggers the degradation of Cdh1. Cdh1 degradation is mediated by the APC/C itself in a "trans" mechanism in which one molecule of Cdh1 recruits a second molecule of Cdh1 to the APC/C for ubiquitination. Degradation requires an intact glucose-sensing SNF1 protein kinase complex (orthologous to the mammalian AMPK nutritional sensor), which directly phosphorylates Cdh1 on Ser-200 within an unstructured N-terminal region. In the absence of phosphorylation, expression of a Cdh1-S200A mutant is fully stabilized, leading to chromosome instability and loss of viability. We hypothesize that Cdh1 degradation is necessary for the preservation of cell cycle regulators and chromosome cohesion proteins between the reductional and equational meiotic divisions, which occur without the intervening Gap or S phases found in mitotic cell cycles.

4.
Mol Biol Cell ; 18(12): 5139-53, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17942599

RESUMEN

In the yeast Saccharomyces cerevisiae, a ring of myosin II forms in a septin-dependent manner at the budding site in late G1. This ring remains at the bud neck until the onset of cytokinesis, when actin is recruited to it. The actomyosin ring then contracts, septum formation occurs concurrently, and cytokinesis is soon completed. Deletion of MYO1 (the only myosin II gene) is lethal on rich medium in the W303 strain background and causes slow-growth and delayed-cell-separation phenotypes in the S288C strain background. These phenotypes can be suppressed by deletions of genes encoding nonessential components of the anaphase-promoting complex (APC/C). This suppression does not seem to result simply from a delay in mitotic exit, because overexpression of a nondegradable mitotic cyclin does not suppress the same phenotypes. Overexpression of either IQG1 or CYK3 also suppresses the myo1Delta phenotypes, and Iqg1p (an IQGAP protein) is increased in abundance and abnormally persistent after cytokinesis in APC/C mutants. In vitro assays showed that Iqg1p is ubiquitinated directly by APC/C(Cdh1) via a novel recognition sequence. A nondegradable Iqg1p (lacking this recognition sequence) can suppress the myo1Delta phenotypes even when expressed at relatively low levels. Together, the data suggest that compromise of APC/C function allows the accumulation of Iqg1p, which then promotes actomyosin-ring-independent cytokinesis at least in part by activation of Cyk3p.


Asunto(s)
Citocinesis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Actomiosina/metabolismo , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Regulación Fúngica de la Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Cadenas Pesadas de Miosina/deficiencia , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Fenotipo , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Ubiquitina/metabolismo , Proteínas Activadoras de ras GTPasa/genética
5.
Mol Cell Biol ; 25(10): 3906-13, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15870265

RESUMEN

Ctk1 is a Saccharomyces cerevisiae cyclin-dependent protein kinase (CDK) that assembles with Ctk2 and Ctk3 to form an active protein kinase complex, CTDK-I. CTDK-I phosphorylates Ser2 within the RNA polymerase II C-terminal domain, an activity that is required for efficient transcriptional elongation and 3' RNA processing. Ctk1 contains a conserved T loop, which undergoes activating phosphorylation in other CDKs. We show that Ctk1 is phosphorylated on Thr-338 within the T loop. Mutation of this residue abolished Ctk1 kinase activity in vitro and resulted in a cold-sensitive phenotype. As with other yeast CDKs undergoing T-loop phosphorylation, Ctk1 phosphorylation on Thr-338 was dependent on the Cak1 protein kinase. Ctk1 isolated from cak1Delta cells was unphosphorylated and exhibited low protein kinase activity. Moreover, Cak1 directly phosphorylated Ctk1 in vitro. Unlike wild-type cells, cells expressing Ctk1(T338A) delayed growth at early stationary phase, did not show the increase in Ser2 phosphorylation that normally accompanies the transition from rapid growth to stationary phase, and had compromised transcriptional activation of two stationary-phase genes, CTT1 and SPI1. Therefore, Ctk1 phosphorylation on Thr-338 is carried out by Cak1 and is required for normal gene transcription during the transition into stationary phase.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas Quinasas/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/química , Estructura Terciaria de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Treonina/metabolismo , Activación Transcripcional/genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
6.
Cell Signal ; 33: 41-48, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28189585

RESUMEN

The anaphase-promoting complex (APC) is a ubiquitin ligase responsible for promoting the degradation of many cell cycle regulators. One of the activators and substrate-binding proteins for the APC is Cdc20. It has been shown previously that Cdc20 can promote its own degradation by the APC in normal cycling cells mainly through a cis-degradation mode (i.e. via an intramolecular mechanism). However, how Cdc20 is degraded during the spindle assembly checkpoint (SAC) is still not fully clear. In this study, we used a dual-Cdc20 system to investigate this issue and found that the cis-degradation mode is also the major pathway responsible for Cdc20 degradation during the SAC. In addition, we found that there is an inverse relationship between APCCdc20 activity and the transcriptional activity of the CDC20 promoter, which likely occurs through feedback regulation by APCCdc20 substrates, such as the cyclins Clb2 and Clb5. These findings contribute to our understanding of how the inhibition of APCCdc20 activity and enhanced Cdc20 degradation are required for proper spindle checkpoint arrest.


Asunto(s)
Proteínas Cdc20/genética , Regulación Fúngica de la Expresión Génica , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Regiones Promotoras Genéticas/genética , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
7.
BMC Biochem ; 6: 19, 2005 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16191191

RESUMEN

BACKGROUND: Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required for the G2 to M transition during Xenopus oocyte maturation and for normal S-phase entry in cultured human cells. RESULTS: We have characterized the substrate specificity and enzymatic activity of human Cdk2-Speedy/Ringo A2 in order to gain insights into the possible functions of this complex. In contrast to Cdk2-cyclin A, which has a well-defined consensus target site ((S/T)PX(K/R)) that strongly favors substrates containing a lysine at the +3 position of substrates, Cdk2-Speedy/Ringo A2 displayed a broad substrate specificity at this position. Consequently, Cdk2-Ringo/Speedy A2 phosphorylated optimal Cdk2 substrates such as histone H1 and a KSPRK peptide poorly, only approximately 0.08% as well as Cdk2-cyclin A, but non-canonical Cdk2 substrates such as a KSPRY peptide relatively well, with an efficiency of approximately 80% compared to Cdk2-cyclin A. Cdk2-Speedy/Ringo A2 also phosphorylated authentic Cdk2 substrates, such as Cdc25 proteins, which contain non-canonical CDK phosphorylation sites, nearly as well as Cdk2-cyclin A. Phosphopeptide mapping indicated that Cdk2-Speedy/Ringo A2 and Cdk2-cyclin A phosphorylate distinct subsets of sites on Cdc25 proteins. Thus, the low activity that Cdk2-Speedy/Ringo A2 displays when assayed on conventional Cdk2 substrates may significantly underestimate the potential physiological importance of Cdk2-Speedy/Ringo A2 in phosphorylating key subsets of Cdk2 substrates. Unlike Cdk2-cyclin A, whose activity depends strongly on activating phosphorylation of Cdk2 on Thr-160, neither the overall catalytic activity nor the substrate recognition by Cdk2-Speedy/Ringo A2 was significantly affected by this phosphorylation. Furthermore, Cdk2-Speedy/Ringo A2 was not a suitable substrate for metazoan CAK (which phosphorylates Cdk2 at Thr-160), supporting the notion that Speedy/Ringo A2 activates Cdk2 in a CAK-independent manner. CONCLUSION: There are major differences in substrate preferences between CDK-Speedy/Ringo A2 and Cdk2-cyclin complexes. These differences may accommodate the CAK-independent activation of Cdk2 by Speedy/Ringo A2 and they raise the possibility that CDK-Speedy/Ringo A2 complexes could phosphorylate and regulate a subset of non-canonical CDK substrates, such as Cdc25 protein phosphatases, to control cell cycle progression.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/genética , Sustitución de Aminoácidos/fisiología , Animales , Bovinos , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Fosforilación
8.
Mol Biol Cell ; 26(12): 2205-16, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25877870

RESUMEN

The anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15. We found that ubp15∆ cells exhibited delayed progression from G1 into S phase and increased sensitivity to the DNA synthesis inhibitor hydroxyurea. Both phenotypes of ubp15∆ cells were rescued by additional copies of the S-phase cyclin gene CLB5. Clb5 is an unstable protein targeted for proteasome-mediated degradation by several pathways. We found that during G1 phase, the APC(Cdh1)-mediated degradation of Clb5 was accelerated in ubp15∆ cells. Ubp15 interacted with Clb5 independent of Cdh1 and deubiquitinated Clb5 in a reconstituted system. Thus deubiquitination by Ubp15 counteracts APC activity toward cyclin Clb5 to allow Clb5 accumulation and a timely entry into S phase.


Asunto(s)
Proteínas Cdh1/metabolismo , Ciclina B/metabolismo , Endopeptidasas/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteasas Ubiquitina-Específicas/metabolismo , Endopeptidasas/genética , Mutación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
PLoS One ; 7(10): e48020, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144720

RESUMEN

The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF) complex. Acting in concert with the substrate-binding F-box protein Grr1, SCF(Grr1) promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas F-Box/genética , Immunoblotting , Microscopía Fluorescente , Mutación , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Unión Proteica/genética , Proteolisis , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
10.
PLoS One ; 7(9): e45895, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049888

RESUMEN

The Anaphase-Promoting Complex/Cyclosome (APC/C) is an essential ubiquitin ligase that targets numerous proteins for proteasome-mediated degradation in mitosis and G1. To gain further insight into cellular pathways controlled by APC/C(Cdh1), we developed two complementary approaches to identify additional APC/C(Cdh1) substrates in budding yeast. First, we analyzed the stabilities of proteins that were expressed at the same time in the cell cycle as known APC/C substrates. Second, we screened for proteins capable of interacting with the Cdh1 substrate-binding protein in a yeast two-hybrid system. Here we characterize five potential APC/C substrates identified using these approaches: the transcription factors Tos4 and Pdr3; the mRNA processing factor Fir1; the spindle checkpoint protein kinase Mps1; and a protein of unknown function, Ybr138C. Analysis of the degradation motifs within these proteins revealed that the carboxyl-terminal KEN box and D-boxes of Tos4 are important for its interaction with Cdh1, whereas the N-terminal domain of Ybr138C is required for its instability. Functionally, we found that a stabilized form of Mps1 delayed cell division upon mild spindle disruption, and that elevated levels of Ybr138C reduced cell fitness. Interestingly, both Tos4 and Pdr3 have been implicated in the DNA damage response, whereas Mps1 regulates the spindle assembly checkpoint. Thus, the APC/C(Cdh1)-mediated degradation of these proteins may help to coordinate re-entry into the cell cycle following environmental stresses.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdh1 , Ciclo Celular , Proliferación Celular , Eliminación de Gen , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Complejos de Ubiquitina-Proteína Ligasa/química , Factores de Escisión y Poliadenilación de ARNm/metabolismo
11.
Mol Biol Cell ; 22(13): 2175-84, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21562221

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is an essential ubiquitin ligase that targets cell cycle proteins for proteasome-mediated degradation in mitosis and G1. The APC regulates a number of cell cycle processes, including spindle assembly, mitotic exit, and cytokinesis, but the full range of its functions is still unknown. To better understand cellular pathways controlled by the APC, we performed a proteomic screen to identify additional APC substrates. We analyzed cell cycle-regulated proteins whose expression peaked during the period when other APC substrates were expressed. Subsequent analysis identified several proteins, including the transcriptional repressors Nrm1 and Yhp1, as authentic APC substrates. We found that APC(Cdh1) targeted Nrm1 and Yhp1 for degradation in early G1 through Destruction-box motifs and that the degradation of these repressors coincided with transcriptional activation of MBF and Mcm1 target genes, respectively. In addition, Nrm1 was stabilized by phosphorylation, most likely by the budding yeast cyclin-dependent protein kinase, Cdc28. We found that expression of stabilized forms of Nrm1 and Yhp1 resulted in reduced cell fitness, due at least in part to incomplete activation of G1-specific genes. Therefore, in addition to its known functions, APC-mediated targeting of Nrm1 and Yhp1 coordinates transcription of multiple genes in G1 with other cell cycle events.


Asunto(s)
Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Cdh1 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fase G1/genética , Fase G1/fisiología , Proteína 1 de Mantenimiento de Minicromosoma , Mitosis/genética , Mitosis/fisiología , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteómica/métodos , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Activación Transcripcional/fisiología , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Cell Cycle ; 7(19): 3037-47, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18802405

RESUMEN

Cyclin-dependent kinases (CDKs) control cell cycle transitions and progression. In addition to their activation via binding to cyclins, CDKs can be activated via binding to an unrelated class of cell cycle regulators termed Speedy/Ringo (S/R) proteins. Although mammals contain at least five distinct Speedy/Ringo homologues, the specific functions of members of this growing family of CDK activators remain largely unknown. We investigated the cell cycle roles of human Speedy/Ringo C in HEK293 cells. Down-regulation of Speedy/Ringo C by RNA interference delayed S and G(2) progression whereas ectopic expression had the opposite effect, reducing S and G(2)/M populations. Double thymidine arrest and release experiments showed that overexpression of Speedy/Ringo C promoted late S phase progression. Using a novel three-color FACS protocol to determine the length of G(2) phase, we found that the suppression of Speedy/Ringo C by RNAi prolonged G(2) phase by approximately 30 min whereas ectopic expression of Speedy/Ringo C shortened G(2) phase by approximately 25 min. In addition, overexpression of Speedy/Ringo C disrupted the G(2) DNA damage checkpoint, increased cell death and caused a cell cycle delay at the G(1)-to-S transition. These observations indicate that CDK-Speedy/Ringo C complexes positively regulate cell cycle progression during the late S and G(2) phases of the cell cycle.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Fase G2 , Fase S , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Células Cultivadas , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Datos de Secuencia Molecular , Interferencia de ARN
13.
Nat Cell Biol ; 10(4): 381-3, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18379598

RESUMEN

The anaphase-promoting complex (APC) mediates the ubiquitination and degradation of key M-phase regulators, including cyclins and the anaphase inhibitor securin. Intriguingly, securin can also inhibit the degradation of cyclin B. This competition between substrates permits the accumulation of enough cyclin to drive entry into M phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas de Ciclo Celular/genética , Ratones , Proteínas Nucleares/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Securina , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores
14.
Mol Cell Biol ; 28(15): 4653-64, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18519589

RESUMEN

The ubiquitin ligase activity of the anaphase-promoting complex (APC)/cyclosome needs to be tightly regulated for proper cell cycle progression. Substrates are recruited to the APC by the Cdc20 and Cdh1 accessory proteins. The Cdh1-APC interaction is inhibited through phosphorylation of Cdh1 by Cdc28, the major cyclin-dependent protein kinase in budding yeast. More recently, Acm1 was reported to be a Cdh1-binding and -inhibitory protein in budding yeast. We found that although Acm1 is an unstable protein and contains the KEN-box and D-box motifs typically found in APC substrates, Acm1 itself is not an APC substrate. Rather, it uses these motifs to compete with substrates for Cdh1 binding, thereby inhibiting their recruitment to the APC. Mutation of these motifs prevented Acm1-Cdh1 binding in vivo and rendered Acm1 inactive both in vitro and in vivo. Acm1 stability was critically dependent on phosphorylation by Cdc28, as Acm1 was destabilized following inhibition of Cdc28, mutation of consensus Cdc28 phosphorylation sites in Acm1, or deletion of the Bmh1 and Bmh2 phosphoprotein-binding proteins. Thus, Cdc28 serves dual roles in inhibiting Cdh1-dependent APC activity during the cell cycle: stabilization of the Cdh1 inhibitor Acm1 and direct phosphorylation of Cdh1 to prevent its association with the APC.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Mutación/genética , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Represoras/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Especificidad por Sustrato , Termodinámica , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación
15.
Genes Dev ; 21(6): 655-67, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17369399

RESUMEN

Inappropriate attachment/tension between chromosomal kinetochores and the kinetochore microtubules activates the spindle assembly checkpoint, which delays anaphase by blocking the ubiquitin-mediated degradation of securin/Pds1p by APCCdc20. The checkpoint proteins Mad2 and Mad3/BubR1 bind to Cdc20, although how they inhibit APCCdc20 is unclear. We investigated the roles of two evolutionarily conserved KEN boxes and a D box within Mad3/BubR1. Although such motifs usually mediate APC-substrate recognition and ubiquitination, they have no apparent role in Mad3p turnover in Saccharomyces cerevisiae. Instead, these motifs are important for Mad3p function in the checkpoint and for binding to Cdc20p. We show that the Mad3p D box and KEN boxes function together to mediate Cdc20p-Mad3p interaction and that Mad3p and an anaphase-promoting complex (APC) substrate, Hsl1p, compete for Cdc20p binding in a D-box- and KEN-box-dependent manner. In vivo, we observed an increased binding of Cdc20p to Mad3p and decreased binding to Hsl1p upon checkpoint activation. Furthermore, we demonstrate that Mad2p stimulates the association between Mad3p and Cdc20p and that this stimulated binding requires KEN box 1 within Mad3p. These findings implicate Mad3p as a pseudosubstrate inhibitor of APCCdc20, competing with APC substrates for Cdc20p binding. We present a model aimed at unifying previous analyses of checkpoint function by focusing on the Mad3-Cdc20 interaction.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Sitios de Unión , Unión Competitiva , Proteínas Cdc20 , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Secuencia Conservada , Proteínas Mad2 , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Huso Acromático/metabolismo
16.
Mol Cell ; 18(5): 533-42, 2005 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-15916960

RESUMEN

The anaphase-promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators. Cdh1p is an APC coactivator that directly binds APC substrates. A genetic screen in budding yeast identified residues within Cdh1p critical for its function. Cdh1p proteins containing mutations within the "C box" or the "IR" motif could bind substrate, but not the APC, whereas mutants that only bound the APC were not identified, suggesting an ordered assembly of the ternary APC-Cdh1p-substrate complex. Supporting this hypothesis, we found that substrate binding to wild-type Cdh1p enhanced its association with the APC in yeast cells. We used peptide competition assays to demonstrate that Cdh1p interacts directly with the D box and the KEN box, two motifs within APC substrates known to be required for APC-mediated degradation. Moreover, an intact D box domain within a substrate was required to stimulate the association between the Cdh1p-substrate complex and the APC.


Asunto(s)
Secuencias de Aminoácidos , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdh1 , Análisis Mutacional de ADN , Complejos Multiproteicos , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Cell Cycle ; 4(1): 155-65, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15611625

RESUMEN

In addition to their activation via binding to cyclins, cyclin-dependent kinases (CDKs) can be activated via binding to a novel cell cycle regulator termed Speedy/Ringo, which shows no apparent similarity to cyclins. The first Speedy/Ringo protein was found to be essential for Xenopus oocyte maturation and a human homolog (Spy1, herein called Speedy/ Ringo A1) regulates S-phase entry and cell survival after DNA damage in cultured somatic cells. We have identified a Speedy/Ringo-like gene in the most primitive branching clade of chordates (Ciona intestinalis), as well as four mammalian homologs. Of the mammalian proteins, two, Speedy/Ringo A and C, bind to Cdc2 and Cdk2, whereas Speedy/Ringo B binds preferentially to Cdc2. Despite their distinct CDK-binding preferences, both Speedy/Ringo A and B can promote the maturation of Xenopus oocytes and all three Speedy/Ringo proteins can bind to and activate CDKs in vivo. These mammalian Speedy/Ringo proteins exhibit distinct tissue expression patterns, though all three are enriched in testis, consistent with the initial observation that Xenopus Speedy/Ringo functions during meiosis. Speedy/Ringo A is widely expressed in tissues and cell lines. Speedy/Ringo B expression appears to be testis-specific. Speedy/Ringo C is expressed in diverse tissues, particularly those that undergo polyploidization. All Speedy/Ringo proteins share a highly conserved approximately 140-aa domain we term the Speedy/Ringo box that is essential for CDK binding. Point mutations in this domain abolish CDK binding. Besides the central Speedy/Ringo box, Speedy/Ringo A contains a C-terminal portion, which promotes CDK activation, and an N-terminal portion, which is dispersible for both CDK binding and activation but that influences protein expression. The existence of this growing family of CDK activators suggests that Speedy/Ringo proteins may play as complex a role in cell cycle control as the diverse family of cyclins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteína Quinasa CDC2/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Clonación Molecular , Quinasa 2 Dependiente de la Ciclina/fisiología , Ciclinas/fisiología , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
18.
Eukaryot Cell ; 2(2): 274-83, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12684377

RESUMEN

CTDK-I phosphorylates the C-terminal domain (CTD) of the large subunit of yeast RNA polymerase II in a reaction that stimulates transcription elongation. Mutations in CTDK-I subunits-Ctk1p, Ctk2p, and Ctk3p-confer conditional phenotypes. In this study, we examined the role of CTDK-I in the DNA damage response. We found that mutation of individual CTDK-I subunits rendered yeast sensitive to hydroxyurea (HU) and UV irradiation. Treatment with DNA-damaging agents increased phosphorylation of Ser2 within the CTD repeats in wild-type but not in ctk1Delta mutant cells. Using microarray hybridization, we identified genes whose transcription following DNA damage is Ctk1p dependent, including several DNA repair and stress response genes. Following HU treatment, the level of Ser2-phosphorylated RNA polymerase II increased both globally and on the CTDK-I-regulated genes. The pleiotropic phenotypes of ctk mutants suggest that CTDK-I activity is essential during large-scale transcriptional repatterning under stress and unfavorable growth conditions.


Asunto(s)
Daño del ADN/genética , Proteínas Quinasas/deficiencia , Proteínas Quinasas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Células Cultivadas , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Hidroxiurea/farmacología , Mutación/genética , Fenotipo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , ARN Polimerasa II/genética , Serina/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
19.
J Biol Chem ; 277(36): 33482-9, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12084729

RESUMEN

Cyclin-dependent kinases (cdks) coordinate progression through the eukaryotic cell cycle and require phosphorylation by a cdk-activating kinase (CAK) for full activity. In most eukaryotes Cdk7 is the catalytic subunit of a heterotrimeric CAK (Cdk7-cyclin H-Mat1) that is also involved in transcription as part of the transcription factor IIH complex. The Saccharomyces cerevisiae CAK, Cak1p, is a monomeric protein kinase with an atypical sequence and unusual biochemical properties compared with trimeric CAKs and other protein kinases. We sought to determine whether these properties were shared by a small group of monomeric CAKs that can function in place of CAK1 in S. cerevisiae. We found that Schizosaccharomyces pombe Csk1, Candida albicans Cak1, and Arabidopsis thaliana Cak1At, like Cak1p, all displayed a preference for cyclin-free cdk substrates, were insensitive to the protein kinase inhibitor 5'-fluorosulfonylbenzoyladenosine (FSBA), and were insensitive to mutation of a highly conserved lysine residue found in the nucleotide binding pocket of all protein kinases. The S. pombe and C. albicans kinases also resembled Cak1p in their kinetics of nucleotide and protein substrate utilization. Conservation of these unusual properties in fungi and plants points to shared evolutionary requirements not met by Cdk7 and raises the possibility of developing antifungal agents targeting CAKs.


Asunto(s)
Quinasas CDC2-CDC28 , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Alanina/química , Secuencia de Aminoácidos , Animales , Antifúngicos/farmacología , Arabidopsis/metabolismo , Candida albicans/metabolismo , Línea Celular , Quinasa 2 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/genética , Relación Dosis-Respuesta a Droga , Glutatión Transferasa/metabolismo , Humanos , Insectos , Cinética , Lisina/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Xenopus , Xenopus laevis , Quinasa Activadora de Quinasas Ciclina-Dependientes
20.
Nat Struct Biol ; 9(4): 263-7, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11887184

RESUMEN

Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of linker histones into nucleosomal array substrates. Much of this inhibition is independent of linker histone-induced folding of the arrays. We also find that phosphorylation of the linker histone by Cdc2/Cyclin B kinase can rescue remodeling by ySWI/SNF. These results suggest that linker histones exert a global, genome-wide control over remodeling activities, implicating a new, obligatory coupling between linker histone kinases and ATP-dependent remodeling enzymes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cromatina/química , Cromatina/enzimología , Citidina Desaminasa , ADN Helicasas , Histonas/metabolismo , Conformación de Ácido Nucleico , Desaminasas APOBEC-1 , Adenosina Trifosfatasas/metabolismo , Animales , Autoantígenos/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Fosforilación , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Xenopus laevis , Levaduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA