Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Structure ; 32(2): 131-147.e7, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157856

RESUMEN

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Sitios de Unión , Epítopos
2.
Front Immunol ; 14: 1138629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37026013

RESUMEN

Introduction: Antibody therapeutic strategies have served an important role during the COVID-19 pandemic, even as their effectiveness has waned with the emergence of escape variants. Here we sought to determine the concentration of convalescent immunoglobulin required to protect against disease from SARS-CoV-2 in a Syrian golden hamster model. Methods: Total IgG and IgM were isolated from plasma of SARS-CoV-2 convalescent donors. Dose titrations of IgG and IgM were infused into hamsters 1 day prior to challenge with SARS-CoV-2 Wuhan-1. Results: The IgM preparation was found to have ~25-fold greater neutralization potency than IgG. IgG infusion protected hamsters from disease in a dose-dependent manner, with detectable serum neutralizing titers correlating with protection. Despite a higher in vitro neutralizing potency, IgM failed to protect against disease when transferred into hamsters. Discussion: This study adds to the growing body of literature that demonstrates neutralizing IgG antibodies are important for protection from SARS-CoV-2 disease, and confirms that polyclonal IgG in sera can be an effective preventative strategy if the neutralizing titers are sufficiently high. In the context of new variants, against which existing vaccines or monoclonal antibodies have reduced efficacy, sera from individuals who have recovered from infection with the emerging variant may potentially remain an efficacious tool.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Pandemias , Inmunoglobulina G , Anticuerpos Neutralizantes , Mesocricetus , Sobrevivientes
3.
Nat Commun ; 14(1): 580, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737435

RESUMEN

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Anticuerpos de Dominio Único , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Epítopos , Ferritinas/genética , Fragmentos Fc de Inmunoglobulinas , Ratones Transgénicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Tiburones
4.
Vaccines (Basel) ; 10(5)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35632473

RESUMEN

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.

5.
Sci Adv ; 7(42): eabg4084, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34652943

RESUMEN

Dengue virus (DENV) is a worldwide health burden, and a safe vaccine is needed. Neutralizing antibodies bind to quaternary epitopes on DENV envelope (E) protein homodimers. However, recombinantly expressed soluble E proteins are monomers under vaccination conditions and do not present these quaternary epitopes, partly explaining their limited success as vaccine antigens. Using molecular modeling, we found DENV2 E protein mutations that induce dimerization at low concentrations (<100 pM) and enhance production yield by more than 50-fold. Cross-dimer epitope antibodies bind to the stabilized dimers, and a crystal structure resembles the wild-type (WT) E protein bound to a dimer epitope antibody. Mice immunized with the stabilized dimers developed antibodies that bind to E dimers and not monomers and elicited higher levels of DENV2-neutralizing antibodies compared to mice immunized with WT E antigen. Our findings demonstrate the feasibility of using structure-based design to produce subunit vaccines for dengue and other flaviviruses.

6.
bioRxiv ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159328

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

7.
Cell Rep ; 37(12): 110143, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34919799

RESUMEN

The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID50 > 10,000) following a single immunization, whereas RBD-ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations and also show durable and potent neutralization against circulating VoCs. Passive transfer of immunoglobulin G (IgG) purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2-blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.

8.
NPJ Vaccines ; 6(1): 129, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711815

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

9.
Br J Radiol ; 92(1095): 20180759, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30673305

RESUMEN

OBJECTIVE:: Non-ablative or mild hyperthermia (HT) has been shown in preclinical (and clinical) studies as a localized radiosensitizer that enhances the tumoricidal effects of radiation. Most preclinical in vivo HT studies use subcutaneous tumor models which do not adequately represent clinical conditions (e.g. proximity of normal/critical organs) or replicate the tumor microenvironment-both of which are important factors for eventual clinical translation. The purpose of this work is to demonstrate proof-of-concept of locoregional radiosensitization with superficially applied, radiofrequency (RF)-induced HT in an orthotopic mouse model of prostate cancer. METHODS:: In a 4-arm study, 40 athymic male nude mice were inoculated in the prostate with luciferase-transfected human prostate cancer cells (PC3). Tumor volumes were allowed to reach 150-250 mm3 (as measured by ultrasound) following which, mice were randomized into (i) control (no intervention); (ii) HT alone; (iii) RT alone; and (iv) HT + RT. RF-induced HT was administered (Groups ii and iv) using the Oncotherm LAB EHY-100 device to achieve a target temperature of 41 °C in the prostate. RT was administered ~30 min following HT, using an image-guided small animal radiotherapy research platform. In each case, a dual arc plan was used to deliver 12 Gy to the target in a single fraction. One animal from each cohort was euthanized on Day 10 or 11 after treatment for caspase-9 and caspase-3 Western blot analysis. RESULTS:: The inoculation success rate was 89%. Mean tumor size at randomization (~16 days post-inoculation) was ~189 mm3 . Following the administration of RT and HT, mean tumor doubling times in days were: control = 4.2; HT = 4.5; RT = 30.4; and HT + RT = 33.4. A significant difference (p = 0.036) was noted between normalized nadir volumes for the RT alone (0.76) and the HT + RT (0.40) groups. Increased caspase-3 expression was seen in the combination treatment group compared to the other treatment groups. CONCLUSION:: These early results demonstrate the successful use of external mild HT as a localized radiosensitizer for deep-seated tumors. ADVANCES IN KNOWLEDGE:: We successfully demonstrated the feasibility of administering external mild HT in an orthotopic tumor model and demonstrated preclinical proof-of-concept of HT-based localized radiosensitization in prostate cancer radiotherapy.


Asunto(s)
Hipertermia Inducida , Neoplasias de la Próstata , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen , Animales , Masculino , Ratones , Apoptosis/efectos de la radiación , Western Blotting , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Terapia Combinada , Modelos Animales de Enfermedad , Hipertermia Inducida/métodos , Hipertermia Inducida/veterinaria , Ratones Desnudos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/veterinaria , Fármacos Sensibilizantes a Radiaciones , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Distribución Aleatoria , Tomografía Computarizada por Rayos X/métodos
10.
Cancers (Basel) ; 10(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486519

RESUMEN

Pancreatic cancer (PC) has the highest mortality rate amongst all other cancers in both men and women, with a one-year relative survival rate of 20%, and a five-year relative survival rate of 8% for all stages of PC combined. The Whipple procedure, or pancreaticoduodenectomy, can increase survival for patients with resectable PC, however, less than 20% of patients are candidates for surgery at time of presentation. Most of the patients are diagnosed with advanced PC, often with regional and distant metastasis. In these advanced cases, chemotherapy and radiation have shown limited tumor control, and PC continues to be refractory to treatment and results in a poor survival outcome. In recent years, there has been intensive research on checkpoint inhibitor immunotherapy for PC, however, PC is characterized with dense stromal tissue and a tumor microenvironment (TME) that is highly immunosuppressive, which makes immunotherapy less effective. Interestingly, when immunotherapy is combined with radiation therapy (RT) and loco-regional hyperthermia (HT), it has demonstrated enhanced tumor responses. HT improves tumor killing via a variety of mechanisms, targeting both the tumor and the TME. Targeted HT raises the temperature of the tumor and surrounding tissues to 42⁻43 °C and makes the tumor more immunoresponsive. HT can also modulate the immune system of the TME by inducing and synthesizing heat shock proteins (HSP), which also activate an anti-tumor response. It is well known that HT can enhance RT-induced DNA damage in cancer cells and simultaneously help to oxygenate hypoxic regions. Thus, it is envisaged that combined HT and RT might have immunomodulatory effects in the PC-TME, making PC more responsive to immunotherapies. Moreover, the combined tripartite approach of immunotherapy, RT, and HT could reduce the overall toxicity associated with each individual therapy, while concomitantly enhancing the immunotherapeutic effect of overall individual therapies to treat local and metastatic PC. Thus, the use of a tripartite combinatorial approach could be promising and more efficacious than monotherapy or dual therapy to treat and increase the survival of the PC patients.

11.
Int J Radiat Oncol Biol Phys ; 99(3): 680-688, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29280463

RESUMEN

PURPOSE/OBJECTIVES: Radiation-induced erectile-dysfunction (RiED) is one of the most common side effects of radiation therapy (RT) and significantly reduces the quality of life (QoL) of cancer patients. Approximately 50% of prostate cancer patients experience RiED within 3 to 5 years after completion of RT. A series of vascular, muscular, and neurogenic injuries after prostate RT lead to RiED; however, the precise role of RT-induced neurogenic injury in RiED has not been fully established. The cavernous nerves (CN) are postganglionic parasympathetic nerves located beside the prostate gland that assist in penile erection. This study was designed to investigate the role of CN injury, tissue damage, and altered signaling pathways in an RiED rat model. METHODS AND MATERIALS: Male rats were exposed to a single dose of 25 Gy prostate-confined RT. Erectile function was evaluated by intracavernous pressure (ICP) measurements conducted both 9 and 14 weeks after RT. Neuronal injury was evaluated in the CN using quantitative polymerase chain reaction, conduction studies, transmission electron microscopy, and immunoblotting. Masson trichrome staining was performed to elucidate fibrosis level in penile tissues. RESULTS: There were significant alterations in the ICP (P<.0001) of RT rats versus non-RT rats. TEM analysis showed decreased myelination, increased microvascular damage, and progressive axonal atrophy of the CN fibers after RT. Electrophysiologic analysis showed significant impairment of the CN conduction velocity after RT. RT also significantly increased RhoA/Rho-associated protein kinase 1 (ROCK1) mRNA and protein expression. In addition, penile tissue showed increased apoptosis and fibrosis 14 weeks after RT. CONCLUSIONS: RT-induced CN injury may contribute to RiED; this is therefore a rationale for developing novel therapeutic strategies to mitigate CN and tissue damage. Moreover, further investigation of the RhoA/ROCK pathway's role in mitigating RiED is necessary.


Asunto(s)
Disfunción Eréctil/etiología , Fibras Parasimpáticas Posganglionares/efectos de la radiación , Próstata/inervación , Traumatismos Experimentales por Radiación/complicaciones , Animales , Modelos Animales de Enfermedad , Disfunción Eréctil/fisiopatología , Masculino , Conducción Nerviosa/fisiología , Fibras Parasimpáticas Posganglionares/fisiopatología , Erección Peniana/fisiología , Erección Peniana/efectos de la radiación , Pene/inervación , Pene/patología , Pene/efectos de la radiación , Traumatismos Experimentales por Radiación/fisiopatología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA