RESUMEN
How mtDNA replication is terminated and the newly formed genomes are separated remain unknown. We here demonstrate that the mitochondrial isoform of topoisomerase 3α (Top3α) fulfills this function, acting independently of its nuclear role as a component of the Holliday junction-resolving BLM-Top3α-RMI1-RMI2 (BTR) complex. Our data indicate that mtDNA replication termination occurs via a hemicatenane formed at the origin of H-strand replication and that Top3α is essential for resolving this structure. Decatenation is a prerequisite for separation of the segregating unit of mtDNA, the nucleoid, within the mitochondrial network. The importance of this process is highlighted in a patient with mitochondrial disease caused by biallelic pathogenic variants in TOP3A, characterized by muscle-restricted mtDNA deletions and chronic progressive external ophthalmoplegia (CPEO) plus syndrome. Our work establishes Top3α as an essential component of the mtDNA replication machinery and as the first component of the mtDNA separation machinery.
Asunto(s)
Segregación Cromosómica/genética , Replicación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Mitocondrial/biosíntesis , Dinámicas Mitocondriales/genética , Línea Celular Tumoral , ADN Mitocondrial/genética , Células HeLa , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Oftalmoplejía Externa Progresiva Crónica/genéticaRESUMEN
Recessively inherited variants in AARS2 (NM_020745.2) encoding mitochondrial alanyl-tRNA synthetase (mt-AlaRS) were first described in patients presenting with fatal infantile cardiomyopathy and multiple oxidative phosphorylation defects. To date, all described patients with AARS2-related fatal infantile cardiomyopathy are united by either a homozygous or compound heterozygous c.1774C>T (p.Arg592Trp) missense founder mutation that is absent in patients with other AARS2-related phenotypes. We describe the clinical, biochemical and molecular investigations of two unrelated boys presenting with fatal infantile cardiomyopathy, lactic acidosis and respiratory failure. Oxidative histochemistry showed cytochrome c oxidase-deficient fibres in skeletal and cardiac muscle. Biochemical studies showed markedly decreased activities of mitochondrial respiratory chain complexes I and IV with a mild decrease of complex III activity in skeletal and cardiac muscle. Using next-generation sequencing, we identified a c.1738C>T (p.Arg580Trp) AARS2 variant shared by both patients that was in trans with a loss-of-function heterozygous AARS2 variant; a c.1008dupT (p.Asp337*) nonsense variant or an intragenic deletion encompassing AARS2 exons 5-7. Interestingly, our patients did not harbour the p.Arg592Trp AARS2 founder mutation. In silico modelling of the p.Arg580Trp substitution suggested a deleterious impact on protein stability and folding. We confirmed markedly decreased mt-AlaRS protein levels in patient fibroblasts, skeletal and cardiac muscle, although mitochondrial protein synthesis defects were confined to skeletal and cardiac muscle. In vitro data showed that the p.Arg580Trp variant had a minimal effect on activation, aminoacylation or misaminoacylation activities relative to wild-type mt-AlaRS, demonstrating that instability of mt-AlaRS is the biological mechanism underlying the fatal cardiomyopathy phenotype in our patients.
Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Cardiomiopatías/enzimología , Alanina-ARNt Ligasa/genética , Cardiomiopatías/genética , Enfermedades en Gemelos/genética , Estabilidad de Enzimas , Fibroblastos/metabolismo , Genes Recesivos , Humanos , Lactante , Ácido Láctico , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Linaje , Insuficiencia Respiratoria/enzimologíaRESUMEN
LonP1 is a mitochondrial matrix protease whose selective substrate specificity is essential for maintaining mitochondrial homeostasis. Recessively inherited, pathogenic defects in LonP1 have been previously reported to underlie cerebral, ocular, dental, auricular and skeletal anomalies (CODAS) syndrome, a complex multisystemic and developmental disorder. Intriguingly, although classical mitochondrial disease presentations are well-known to exhibit marked clinical heterogeneity, the skeletal and dental features associated with CODAS syndrome are pathognomonic. We have applied whole exome sequencing to a patient with congenital lactic acidosis, muscle weakness, profound deficiencies in mitochondrial oxidative phosphorylation associated with loss of mtDNA copy number and MRI abnormalities consistent with Leigh syndrome, identifying biallelic variants in the LONP1 (NM_004793.3) gene; c.1693T > C predicting p.(Tyr565His) and c.2197G > A predicting p.(Glu733Lys); no evidence of the classical skeletal or dental defects observed in CODAS syndrome patients were noted in our patient. In vitro experiments confirmed the p.(Tyr565His) LonP1 mutant alone could not bind or degrade a substrate, consistent with the predicted function of Tyr565, whilst a second missense [p.(Glu733Lys)] variant had minimal effect. Mixtures of p.(Tyr565His) mutant and wild-type LonP1 retained partial protease activity but this was severely depleted when the p.(Tyr565His) mutant was mixed with the p.(Glu733Lys) mutant, data consistent with the compound heterozygosity detected in our patient. In summary, we conclude that pathogenic LONP1 variants can lead to a classical mitochondrial disease presentations associated with severe biochemical defects in oxidative phosphorylation in clinically relevant tissues.
Asunto(s)
Proteasas ATP-Dependientes/genética , Anomalías Craneofaciales/genética , Anomalías del Ojo/genética , Trastornos del Crecimiento/genética , Luxación Congénita de la Cadera/genética , Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Osteocondrodisplasias/genética , Anomalías Dentarias/genética , Biopsia , Línea Celular , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/fisiopatología , Exoma/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/fisiopatología , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/fisiopatología , Luxación Congénita de la Cadera/metabolismo , Luxación Congénita de la Cadera/fisiopatología , Humanos , Lactante , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/fisiopatología , Masculino , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , Músculo Esquelético/fisiopatología , Mutación , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/fisiopatología , Fosforilación Oxidativa , Anomalías Dentarias/metabolismo , Anomalías Dentarias/fisiopatología , Secuenciación del ExomaRESUMEN
PURPOSE: Mitochondrial DNA (mtDNA) depletion syndrome (MDDS) encompasses a group of genetic disorders of mtDNA maintenance. Mutation of RRM2B is an uncommon cause of infantile-onset encephalomyopathic MDDS. Here we describe the natural history of this disease. METHODS: Multinational series of new genetically confirmed cases from six pediatric centers. RESULTS: Nine new cases of infantile-onset RRM2B deficiency, and 22 previously published cases comprised a total cohort of 31 patients. Infants presented at a mean of 1.95 months with truncal hypotonia, generalized weakness, and faltering growth. Seizures evolved in 39% at a mean of 3.1 months. Non-neurological manifestations included respiratory distress/failure (58%), renal tubulopathy (55%), sensorineural hearing loss (36%), gastrointestinal disturbance (32%), eye abnormalities (13%), and anemia (13%). Laboratory features included elevated lactate (blood, cerebrospinal fluid (CSF), urine, magnetic resonance (MR), spectroscopy), ragged-red and cytochrome c oxidase-deficient fibers, lipid myopathy, and multiple oxidative phosphorylation enzyme deficiencies in skeletal muscle. Eight new RRM2B variants were identified. Patients with biallelic truncating variants had the worst survival. Overall survival was 29% at 6 months and 16% at 1 year. CONCLUSIONS: Infantile-onset MDDS due to RRM2B deficiency is a severe disorder with characteristic clinical features and extremely poor prognosis. Presently management is supportive as there is no effective treatment. Novel treatments are urgently needed.
Asunto(s)
Proteínas de Ciclo Celular/genética , Seudoobstrucción Intestinal/genética , Distrofia Muscular Oculofaríngea/genética , Mutación Missense , Ribonucleótido Reductasas/genética , Proteínas de Ciclo Celular/química , Femenino , Humanos , Lactante , Recién Nacido , Seudoobstrucción Intestinal/mortalidad , Masculino , Modelos Moleculares , Distrofia Muscular Oculofaríngea/mortalidad , Oftalmoplejía/congénito , Pronóstico , Conformación Proteica , Ribonucleótido Reductasas/química , Análisis de SupervivenciaRESUMEN
Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.
Asunto(s)
ADN Mitocondrial/genética , GMP-Reductasa/genética , Enfermedades de Inicio Tardío/genética , Músculo Esquelético/enzimología , Oftalmoplejía/genética , Adenina/metabolismo , Anciano , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/metabolismo , Replicación del ADN , ADN Mitocondrial/metabolismo , Femenino , Fibroblastos/enzimología , GMP-Reductasa/deficiencia , GMP-Reductasa/metabolismo , Guanina/metabolismo , Células HEK293 , Células HeLa , Heterocigoto , Humanos , Enfermedades de Inicio Tardío/metabolismo , Enfermedades de Inicio Tardío/patología , Músculo Esquelético/patología , Oftalmoplejía/enzimología , Oftalmoplejía/fisiopatología , Fosforilación Oxidativa , Empalme del ARN , Eliminación de Secuencia , Secuenciación del ExomaRESUMEN
BACKGROUND: Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy. OBJECTIVE: To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency. METHODS: The study was conducted by 42 investigators across 31 academic medical centres. RESULTS: We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion. CONCLUSIONS: In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Mitocondriales/deficiencia , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Timidina Quinasa/deficiencia , Adolescente , Adulto , Edad de Inicio , Anciano , Niño , Preescolar , Femenino , Genes Recesivos , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Enfermedades Musculares/mortalidad , Mutación , Fenotipo , Estudios Retrospectivos , Análisis de Supervivencia , Adulto JovenRESUMEN
Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.
Asunto(s)
Acidosis Láctica/genética , Encefalopatías/genética , Cardiomiopatía Hipertrófica/genética , Proteínas de Unión al GTP/genética , Procesamiento Proteico-Postraduccional , Acidosis Láctica/fisiopatología , Secuencia de Aminoácidos , Encéfalo/patología , Encefalopatías/fisiopatología , Cardiomiopatía Hipertrófica/fisiopatología , Línea Celular , Niño , Preescolar , Consanguinidad , Femenino , Fibroblastos , Proteínas de Unión al GTP/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Biosíntesis de Proteínas , Interferencia de ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Alineación de SecuenciaRESUMEN
Mitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders caused by impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2. Here, we report 5 probands from 4 families who presented with ptosis and ophthalmoplegia as well as other clinical manifestations and multiple mtDNA deletions in muscle. We identified 3 RRM1 loss-of-function variants, including a dominant catalytic site variant (NP_001024.1: p.N427K) and 2 homozygous recessive variants at p.R381, which has evolutionarily conserved interactions with the specificity site. Atomistic molecular dynamics simulations indicate mechanisms by which RRM1 variants affect protein structure. Cultured primary skin fibroblasts of probands manifested mtDNA depletion under cycling conditions, indicating impaired de novo nucleotide synthesis. Fibroblasts also exhibited aberrant nucleoside diphosphate and dNTP pools and mtDNA ribonucleotide incorporation. Our data reveal that primary RRM1 deficiency and, by extension, impaired de novo nucleotide synthesis are causes of MDDS.
Asunto(s)
Enfermedades Mitocondriales , Ribonucleótido Reductasas , Replicación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Enfermedades Mitocondriales/genética , Nucleósidos , Nucleótidos/genética , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismoRESUMEN
While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Mitocondrias/genética , Mutación/genética , Enfermedades del Sistema Nervioso/genética , Transcripción Genética , Adolescente , Adulto , Niño , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/química , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Masculino , Enfermedades del Sistema Nervioso/patología , Fosforilación Oxidativa , Linaje , Dominios Proteicos , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto JovenRESUMEN
BACKGROUND: Trichomonas vaginalis is a human-infecting trichomonad and as such the best studied and the only for which the full genome sequence is available considering its parasitic lifestyle, T. vaginalis encodes an unusually high number of proteins. Many gene families are massively expanded and some genes are speculated to have been acquired from prokaryotic sources. Among the latter are two gene families that harbour domains which share similarity with proteins of Bacteroidales/Spirochaetales and Chlamydiales: the BspA and the Pmp proteins, respectively. RESULTS: We sequenced the transcriptomes of five trichomonad species and screened for the presence of BspA and Pmp domain-containing proteins and characterized individual candidate proteins from both families in T. vaginalis. Here, we demonstrate that (i) BspA and Pmp domain-containing proteins are universal to trichomonads, but specifically expanded in T. vaginalis; (ii) in line with a concurrent expansion of the endocytic machinery, there is a high number of BspA and Pmp proteins which carry C-terminal endocytic motifs; and (iii) both families traffic through the ER and have the ability to increase adhesion performance in a non-virulent T. vaginalis strain and Tetratrichomonas gallinarum by a so far unknown mechanism. CONCLUSIONS: Our results initiate the functional characterization of these two broadly distributed protein families and help to better understand the origin and evolution of BspA and Pmp domains in trichomonads.
Asunto(s)
Proteínas Protozoarias/genética , Trichomonadida/genética , Trichomonas vaginalis/genética , Secuencia de Aminoácidos , Evolución Molecular , Humanos , Análisis de Secuencia de ADN , TranscriptomaRESUMEN
OBJECTIVE: To determine the genetic etiology of a young woman presenting an early-onset, progressive neurodegenerative disorder with evidence of decreased mitochondrial complex I and IV activities in skeletal muscle suggestive of a mitochondrial disorder. METHODS: A case report including diagnostic workup, whole-exome sequencing of the affected patient, filtering, and prioritization of candidate variants assuming a suspected autosomal recessive mitochondrial disorder and segregation studies. RESULTS: After excluding candidate variants for an autosomal recessive mitochondrial disorder, re-evaluation of rare and novel heterozygous variants identified a recently reported, recurrent pathogenic heterozygous CTBP1 missense change (c.991C>T, p.Arg331Trp), which was confirmed to have arisen de novo. CONCLUSIONS: We report the fifth known patient harboring a recurrent pathogenic de novo c.991C>T p.(Arg331Trp) CTBP1 variant, who was initially suspected to have an autosomal recessive mitochondrial disorder. Inheritance of suspected early-onset mitochondrial disease could wrongly be assumed to be autosomal recessive. Hence, this warrants continued re-evaluation of rare and novel heterozygous variants in patients with apparently unsolved suspected mitochondrial disease investigated using next-generation sequencing.
RESUMEN
Mitochondrial translation defects are important causes of early onset mitochondrial disease. Although the biochemical (combined respiratory chain deficiency) signature and neuroimaging are usually distinctive, they are not diagnostic as the genetic origin of mitochondrial translation defects is heterogeneous. We report a female child, born at term to non-consanguineous parents, who exhibited global hypotonia, failure to thrive, persistent and progressive hyperlactacidaemia with lactic acidosis, liver dysfunction and encephalopathy and died at the age of 5 months. Brain MRI revealed hypogenesis of the corpus callosum, T2 signal abnormalities in the medulla oblongata, pons, midbrain, thalami, cerebellar white matter, and a lactate peak on MRS. Muscle histochemistry showed cytochrome c oxidase (COX)-deficient and ragged-red fibres, while muscle biochemical studies showed decreased activities of mitochondrial respiratory chain complexes I and IV. Whole exome sequencing (WES) identified biallelic EARS2 (NM_001083614) variants, a previously reported start-loss (c.1>G, p.Met1?) variant and a novel missense (c.184A>T, p.Ile62Phe) variant. Patient fibroblasts and muscle homogenate displayed markedly decreased EARS2 protein levels, although decreased steady-state levels of complex I (NDUFB8) and complex IV (MT-CO1 and MT-CO2) subunits were only observed in muscle. Pathogenic variants in EARS2, encoding mitochondrial glutamyl-tRNA synthetase (mtGluR), are associated with Leukoencephalopathy involving the Thalamus and Brainstem with high Lactate (LTBL), a mitochondrial disorder characterised by a distinctive brain MRI pattern and a biphasic clinical course. We further outline the unique phenotypic spectrum of LTBL and review the neuroradiological features reported in all patients documented in the literature.
RESUMEN
Importance: YARS2 mutations have been associated with a clinical triad of myopathy, lactic acidosis, and sideroblastic anemia in predominantly Middle Eastern populations. However, the identification of new patients expands the clinical and molecular spectrum of mitochondrial disorders. Objectives: To review the clinical, molecular, and genetic features of YARS2-related mitochondrial disease and to demonstrate a new Scottish founder variant. Design, Setting, and Participants: An observational case series study was conducted at a national diagnostic center for mitochondrial disease in Newcastle upon Tyne, England, and review of cases published in the literature. Six adults in a well-defined mitochondrial disease cohort and 11 additional cases described in the literature were identified with YARS2 variants between January 1, 2000, and January 31, 2015. Main Outcome and Measures: The spectrum of clinical features and disease progression in unreported and reported patients with pathogenic YARS2 variants. Results: Seventeen patients (median [interquartile range] age at onset, 1.5 [9.8] years) with YARS2-related mitochondrial myopathy were identified. Fifteen individuals (88%) exhibited an elevated blood lactate level accompanied by generalized myopathy; only 12 patients (71%) manifested with sideroblastic anemia. Hypertrophic cardiomyopathy (9 [53%]) and respiratory insufficiency (8 [47%]) were also prominent clinical features. Central nervous system involvement was rare. Muscle studies showed global cytochrome-c oxidase deficiency in all patients tested and severe, combined respiratory chain complex activity deficiencies. Microsatellite genotyping demonstrated a common founder effect shared between 3 Scottish patients with a p.Leu392Ser variant. Immunoblotting from fibroblasts and myoblasts of an affected Scottish patient showed normal YARS2 protein levels and mild respiratory chain complex defects. Yeast modeling of novel missense YARS2 variants closely correlated with the severity of clinical phenotypes. Conclusions and Relevance: The p.Leu392Ser variant is likely a newly identified founder YARS2 mutation. Testing for pathogenic YARS2 variants should be considered in patients presenting with mitochondrial myopathy, characterized by exercise intolerance and muscle weakness even in the absence of sideroblastic anemia irrespective of ethnicity. Regular surveillance and early treatment for cardiomyopathy and respiratory muscle weakness is advocated because early treatment may mitigate the significant morbidity and mortality associated with this genetic disorder.
Asunto(s)
Acidosis Láctica/genética , Anemia Sideroblástica/genética , Cardiomiopatías/genética , Miopatías Mitocondriales/genética , Debilidad Muscular/genética , Insuficiencia Respiratoria/genética , Tirosina-ARNt Ligasa/genética , Acidosis Láctica/etnología , Acidosis Láctica/etiología , Adulto , Anciano , Anemia Sideroblástica/etnología , Anemia Sideroblástica/etiología , Cardiomiopatías/etnología , Cardiomiopatías/etiología , Inglaterra/etnología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miopatías Mitocondriales/complicaciones , Miopatías Mitocondriales/etnología , Debilidad Muscular/etnología , Debilidad Muscular/etiología , Mutación , Pronóstico , Insuficiencia Respiratoria/etnología , Insuficiencia Respiratoria/etiología , Escocia/etnologíaRESUMEN
BACKGROUND: Progressive external ophthalmoplegia (PEO) is an eye movement disorder characterised by paresis of the extra ocular muscles and muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Classification of patients is particularly difficult due to overlapping phenotypes and a poor genotype-phenotype relationship. Despite the identification of several nuclear encoded genes causing PEO, over half of patients with clinically confirmed PEO do not have a genetic diagnosis. OBJECTIVE: To systematically review genotypic and phenotypic correlates of published cases of adult-onset PEO. METHODS: Patients were identified from interrogation of articles from Scopus, Medline via PubMed, and Genetic Abstracts databases using electronic searches (1st January 1970 to 8th November 2013). Reference lists and UniProt entries were also manually checked for additional articles. RESULTS: Twelve nuclear encoded genes were identified (TYMP, SLC25A4, POLG, C10ORF2, OPA1, POLG2, RRM2B, TK2, DGUOK, MPV17, MGME1, and DNA2) systematically from 583 patients. At the time of writing, mutations in SPG7 and AFG3L2 genes were reported to be associated with ophthalmoparesis and multiple mtDNA deletions in fourteen additional adult-onset PEO patients, bringing the total number of known genes to fourteen. CONCLUSIONS: Diagnostic yield is still critically dependent on the meticulous clinical and biochemical characterisation of patients. Understanding the intimate relationship between genotype and phenotype remains a fundamental challenge. The results of this systematic review provide guidance to both patients and clinician about future prognosis, and will serve, in future, to assess methods of disease prevention and evaluation of targeted therapeutic strategies.