Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Lancet Oncol ; 17(12): 1653-1660, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27825636

RESUMEN

BACKGROUND: RET rearrangements are found in 1-2% of non-small-cell lung cancers. Cabozantinib is a multikinase inhibitor with activity against RET that produced a 10% overall response in unselected patients with lung cancers. To assess the activity of cabozantinib in patients with RET-rearranged lung cancers, we did a prospective phase 2 trial in this molecular subgroup. METHODS: We enrolled patients in this open-label, Simon two-stage, single-centre, phase 2, single-arm trial in the USA if they met the following criteria: metastatic or unresectable lung cancer harbouring a RET rearrangement, Karnofsky performance status higher than 70, and measurable disease. Patients were given 60 mg of cabozantinib orally per day. The primary objective was to determine the overall response (Response Criteria Evaluation in Solid Tumors version 1.1) in assessable patients; those who received at least one dose of cabozantinib, and had been given CT imaging at baseline and at least one protocol-specified follow-up timepoint. We did safety analyses in the modified intention-to-treat population who received at least one dose of cabozantinib. The accrual of patients with RET-rearranged lung cancer to this protocol has been completed but the trial is still ongoing because several patients remain on active treatment. This study was registered with ClinicalTrials.gov, number NCT01639508. FINDINGS: Between July 13, 2012, and April 30, 2016, 26 patients with RET-rearranged lung adenocarcinomas were enrolled and given cabozantinib; 25 patients were assessable for a response. KIF5B-RET was the predominant fusion type identified in 16 (62%) patients. The study met its primary endpoint, with confirmed partial responses seen in seven of 25 response-assessable patients (overall response 28%, 95% CI 12-49). Of the 26 patients given cabozantinib, the most common grade 3 treatment-related adverse events were lipase elevation in four (15%) patients, increased alanine aminotransferase in two (8%) patients, increased aspartate aminotransferase in two (8%) patients, decreased platelet count in two (8%) patients, and hypophosphataemia in two (8%) patients. No drug-related deaths were recorded but 16 (62%) patients died during the course of follow-up. 19 (73%) patients required dose reductions due to drug-related adverse events. INTERPRETATION: The reported activity of cabozantinib in patients with RET-rearranged lung cancers defines RET rearrangements as actionable drivers in patients with lung cancers. An improved understanding of tumour biology and novel therapeutic approaches will be needed to improve outcomes with RET-directed targeted treatment. FUNDING: Exelixis, National Institutes of Health and National Cancer Institute Cancer Center Support Grant P30 CA008748.


Asunto(s)
Anilidas/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Reordenamiento Génico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-ret/genética , Piridinas/uso terapéutico , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores
2.
Proc Natl Acad Sci U S A ; 108(39): 16375-80, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21930909

RESUMEN

We previously described four small molecules that reduced the growth of lung adenocarcinoma cell lines with either epidermal growth factor receptor (EGFR) or KRAS mutations in a high-throughout chemical screen. By combining affinity proteomics and gene expression analysis, we now propose superoxide dismutase 1 (SOD1) as the most likely target of one of these small molecules, referred to as lung cancer screen 1 (LCS-1). siRNAs against SOD1 slowed the growth of LCS-1 sensitive cell lines; conversely, expression of a SOD1 cDNA increased proliferation of H358 cells and reduced sensitivity of these cells to LCS-1. In addition, SOD1 enzymatic activity was inhibited in vitro by LCS-1 and two closely related analogs. These results suggest that SOD1 is an LCS-1-binding protein that may act in concert with mutant proteins, such as EGFR and KRAS, to promote cell growth, providing a therapeutic target for compounds like LCS-1.


Asunto(s)
Adenocarcinoma/patología , División Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , Superóxido Dismutasa/metabolismo , Adenocarcinoma/enzimología , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/enzimología , ARN Interferente Pequeño/genética , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
3.
J Thorac Oncol ; 19(5): 732-748, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38154514

RESUMEN

INTRODUCTION: ERBB2 amplification in lung cancer remains poorly characterized. HER2 (encoded by ERBB2) is a transmembrane tyrosine kinase capable of ligand-independent dimerization and signaling when overexpressed, and a common cause of HER2 overexpression is ERBB2 amplification. Here, we evaluated the clinicopathologic and genomic characteristics of ERBB2-amplified NSCLC and explored a HER2 antibody-drug conjugate (ADC) therapeutic strategy. METHODS: Our institutional next-generation DNA sequencing data (OncoPanel) from 5769 NSCLC samples (5075 patients) were queried for cases having high-level ERBB2 amplification (≥6 copies). Clinical and demographic characteristics were extracted from the electronic medical records. Efficacy of the pan-ERBB inhibitor afatinib or HER2 ADCs (trastuzumab deruxtecan and trastuzumab emtansine) was evaluated in NSCLC preclinical models and patients with ERBB2 amplification. RESULTS: High-level ERBB2 amplification was identified in 0.9% of lung adenocarcinomas and reliably predicted overexpression of HER2. ERBB2 amplification events are detected in two distinct clinicopathologic and genomic subsets of NSCLC: as the sole mitogenic driver in tumors arising in patients with a smoking history or as a concomitant alteration with other mitogenic drivers in patients with a light or never smoking history. We further reveal that trastuzumab deruxtecan is effective therapy in in vitro and in vivo preclinical models of NSCLC harboring ERBB2 amplification and report two cases of clinical activity of an anti-HER2 ADC in patients who acquired ERBB2 amplification after previous targeted therapy. CONCLUSIONS: High-level ERBB2 amplification reliably predicts HER2 overexpression in patients with NSCLC, and HER2 ADC is effective therapy in this population.


Asunto(s)
Camptotecina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas , Amplificación de Genes , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Masculino , Persona de Mediana Edad , Animales , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Anciano , Ratones , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Prevalencia , Afatinib/uso terapéutico , Afatinib/farmacología , Ado-Trastuzumab Emtansina/uso terapéutico , Ado-Trastuzumab Emtansina/farmacología
4.
Cancer Discov ; 14(6): 965-981, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38315003

RESUMEN

Epigenetic dependencies have become evident in many cancers. On the basis of antagonism between BAF/SWI-SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell-cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. On the basis of this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers. SIGNIFICANCE: Genomic studies of patient epithelioid sarcomas and rhabdoid tumors identify mutations converging on a common pathway for response to EZH2 inhibition. Resistance mutations decouple drug-induced differentiation from cell-cycle control. We identify an epigenetic combination strategy to overcome resistance and improve durability of response, supporting its investigation in clinical trials. See related commentary by Paolini and Souroullas, p. 903. This article is featured in Selected Articles from This Issue, p. 897.


Asunto(s)
Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Piridonas , Humanos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , Piridonas/uso terapéutico , Piridonas/farmacología , Resistencia a Antineoplásicos/genética , Morfolinas/farmacología , Morfolinas/uso terapéutico , Animales , Ratones , Compuestos de Bifenilo/uso terapéutico , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Proteína SMARCB1/genética , Benzamidas/uso terapéutico , Benzamidas/farmacología , Mutación
5.
J Thorac Oncol ; 19(1): 106-118, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678511

RESUMEN

INTRODUCTION: NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS: We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS: We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS: Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neurregulina-1/genética , Neurregulina-1/metabolismo , Receptor ErbB-2 , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transducción de Señal
6.
bioRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766189

RESUMEN

Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1-deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1-deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo. This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.

7.
Clin Cancer Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922339

RESUMEN

BACKGROUND: Even though BRAF fusions are increasingly detected in standard multigene next-generation sequencing panels, few reports have explored their structure and impact on clinical course. PATIENTS/METHODS: We collected data from patients with BRAF fusion-positive cancers identified through a genotyping protocol of 97,024 samples. Fusions were characterized and reviewed for oncogenic potential (in-frame status, non-BRAF partner gene, intact BRAF kinase domain). RESULTS: We found 241 BRAF fusion-positive tumors from 212 patients with 82 unique 5' fusion partners spanning 52 histologies. 39 fusion partners were not previously reported, and 61 were identified once. BRAF fusion incidence was enriched in pilocytic astrocytomas, gangliomas, low-grade neuroepithelial tumors, and acinar cell carcinoma of the pancreas. 24 patients spanning multiple histologies were treated with MAPK-directed therapies of which 20 were evaluable for RECIST. Best response was partial response (N=2), stable disease (N=11), and progressive disease (N=7). The median time on therapy was 1 month with MEK plus BRAF inhibitors ([N=11], range 0-18 months) and 8 months for MEK inhibitors ([N=14], range 1-26 months). 9 patients remained on treatment for longer than 6 months [pilocytic astrocytomas (N=6), Erdheim-Chester disease (N=1), extraventricular neurocytoma (N=1), melanoma (N=1)]. Fifteen patients had acquired BRAF fusions. CONCLUSIONS: BRAF fusions are found across histologies and represent an emerging actionable target. BRAF fusions have a diverse set of fusion partners. Durable responses to MAPK therapies were seen, particularly in pilocytic astrocytomas. Acquired BRAF fusions were identified after targeted therapy underscoring the importance of post-progression biopsies to optimize treatment at relapse in these patients.

8.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36798379

RESUMEN

Essential epigenetic dependencies have become evident in many cancers. Based on the functional antagonism between BAF/SWI/SNF and PRC2 in SMARCB1-deficient sarcomas, we and colleagues recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics of patient tumors and diverse experimental models, we sought to define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient sarcomas and rhabdoid tumors. We found distinct classes of acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest despite EZH2 inhibition, and suggests a general mechanism for effective EZH2 therapy. This also enables us to develop combination strategies to circumvent tazemetostat resistance using cell cycle bypass targeting via AURKB, and synthetic lethal targeting of PGBD5-dependent DNA damage repair via ATR. This reveals prospective biomarkers for therapy stratification, including PRICKLE1 associated with tazemetostat resistance. In all, this work offers a paradigm for rational epigenetic combination therapy suitable for immediate translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers.

9.
J Thorac Oncol ; 18(9): 1165-1183, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37182602

RESUMEN

INTRODUCTION: Although targeted therapies have revolutionized the therapeutic landscape of lung adenocarcinomas (LUADs), disease progression on single-agent targeted therapy against known oncogenic drivers is common, and therapeutic options after disease progression are limited. In patients with MDM2 amplification (MDM2amp) and a concurrent oncogenic driver alteration, we hypothesized that targeting of the tumor-suppressor pathway (by means of restoration of p53 using MDM2 inhibition) and simultaneous targeting of co-occurring MAPK oncogenic pathway might represent a more durably effective therapeutic strategy. METHODS: We evaluated genomic next-generation sequencing data using the Memorial Sloan Kettering Cancer Center-Integrated Mutation Profiling of Actionable Cancer Targets platform to nominate potential targets for combination therapy in LUAD. We investigated the small molecule MDM2 inhibitor milademetan in cell lines and patient-derived xenografts of LUAD with a known driver alteration and MDM2amp. RESULTS: Of 10,587 patient samples from 7121 patients with LUAD profiled by next-generation sequencing, 6% (410 of 7121) harbored MDM2amp. MDM2amp was significantly enriched among tumors with driver alterations in METex14 (36%, p < 0.001), EGFR (8%, p < 0.001), RET (12%, p < 0.01), and ALK (10%, p < 0.01). The combination of milademetan and the MEK inhibitor trametinib was synergistic in growth inhibition of ECLC5-GLx (TRIM33-RET/MDM2amp), LUAD12c (METex14/KRASG12S/MDM2amp), SW1573 (KRASG12C, TP53 wild type), and A549 (KRASG12S) cells and in increasing expression of proapoptotic proteins PUMA and BIM. Treatment of ECLC5-GLx and LUAD12c with single-agent milademetan increased ERK phosphorylation, consistent with previous data on ERK activation with MDM2 inhibition. This ERK activation was effectively suppressed by concomitant administration of trametinib. In contrast, ERK phosphorylation induced by milademetan was not suppressed by concurrent RET inhibition using selpercatinib (in ECLC5-GLx) or MET inhibition using capmatinib (in LUAD12c). In vivo, combination milademetan and trametinib was more effective than either agent alone in ECLC5-GLx, LX-285 (EGFRex19del/MDM2amp), L13BS1 (METex14/MDM2amp), and A549 (KRASG12S, TP53 wild type). CONCLUSIONS: Combined MDM2/MEK inhibition was found to have efficacy across multiple patient-derived LUAD models harboring MDM2amp and concurrent oncogenic drivers. This combination, potentially applicable to LUADs with a wide variety of oncogenic driver mutations and kinase fusions activating the MAPK pathway, has evident clinical implications and will be investigated as part of a planned phase 1/2 clinical trial.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Progresión de la Enfermedad , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Proteínas Proto-Oncogénicas c-mdm2/genética , Factores de Transcripción/genética
10.
Nat Cancer ; 4(9): 1345-1361, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37743366

RESUMEN

RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.


Asunto(s)
Neoplasias Encefálicas , Mutación , Encéfalo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Solventes
11.
Mol Cancer Ther ; 21(2): 336-346, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34907086

RESUMEN

ROS1 fusion proteins resulting from chromosomal rearrangements of the ROS1 gene are targetable oncogenic drivers in diverse cancers. Acquired resistance to targeted inhibitors curtails clinical benefit and response durability. Entrectinib, a NTRK/ROS1/ALK targeted tyrosine kinase inhibitor (TKI), was approved for the treatment of ROS1 fusion-positive non-small cell lung cancer (NSCLC) in 2019. In addition, lorlatinib and repotrectinib are actively being explored in the setting of treatment-naïve or crizotinib-resistant ROS1 fusion driven NSCLC. Here, we employed an unbiased forward mutagenesis screen in Ba/F3 CD74-ROS1 and EZR-ROS1 cells to identify resistance liabilities to entrectinib, lorlatinib, and repotrectinib. ROS1F2004C emerged as a recurrent entrectinib resistant mutation and ROS1G2032R was discovered in entrectinib and lorlatinib-resistant clones. Cell-based and modeling data show that entrectinib is a dual type I/II mode inhibitor, and thus liable to both types of resistant mutations. Comprehensive profiling of all clinically relevant kinase domain mutations showed that ROS1L2086F is broadly resistant to all type I inhibitors, but remains sensitive to type II inhibitors. ROS1F2004C/I/V are resistant to type I inhibitors, entrectinib and crizotinib, and type II inhibitor, cabozantinib, but retain sensitivity to the type I macrocyclic inhibitors. Development of new, more selective type II ROS1 inhibitor(s) or potentially cycling type I and type II inhibitors may be one way to expand durability of ROS1-targeted agents.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Simulación del Acoplamiento Molecular/métodos , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Transfección
12.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326531

RESUMEN

Targeted therapies for MET exon 14-skipping (METΔex14)-driven lung cancers have generated some promising results but response rates remain below that seen for other kinase-driven cancers. One strategy for improving treatment outcomes is to employ rational combination therapies to enhance the suppression of tumour growth and delay or prevent the emergence of resistance. To this end, we profiled the transcriptomes of MET-addicted lung tumours and cell lines and identified the RAS-mitogen-activated protein kinase (MAPK) pathway as a critical effector required for METΔex14-dependent growth. Ectopic expression of MET in an isogenic cell line model showed that overexpression of the mutant MET receptor led to higher levels of MAPK phosphorylation and nuclear import, resulting in increased expression and phosphorylation of nuclear MAPK targets. In comparison, other known MET effectors were unaffected. Inhibition of this pathway by KRAS knockdown in MET-addicted cells in vitro led to decreased viability in only the METΔex14-mutant cells. Conversely, decoupling RAS-MAPK axis, but not other effector pathways, from MET activity via the introduction of constitutively active mutants conferred resistance to MET inhibitors in vitro. Our results suggest that aberrant hyperactivity of the MET receptor caused by the exon 14-skipping mutation does not uniformly upregulate all known downstream effectors, rather gaining a predilection for aberrantly activating and subsequently relying on the RAS-MAPK pathway. These findings provide a rationale for the co-targeting of the RAS-MAPK pathway alongside MET to prolong therapeutic response and circumvent resistance to improve patient survival.

13.
Front Cell Dev Biol ; 10: 1048709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506091

RESUMEN

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive pediatric cancer driven by the EWSR1-WT1 fusion oncogene. Combinations of chemotherapy, radiation and surgery are not curative, and the 5-years survival rate is less than 25%. One potential explanation for refractoriness is the existence of a cancer stem cell (CSC) subpopulation able escape current treatment modalities. However, no study to-date has examined the role of CSCs in DSRCT or established in vitro culture conditions to model this subpopulation. In this study, we investigated the role of stemness markers in DSRCT survival and metastasis, finding that elevated levels of SOX2 and NANOG are associated with worse survival in sarcoma patients and are elevated in metastatic DSRCT tumors. We further develop the first in vitro DSRCT CSC model which forms tumorspheres, expresses increased levels of stemness markers (SOX2, NANOG, KLF4, and OCT4), and resists doxorubicin chemotherapy treatment. This model is an important addition to the DSRCT tool kit and will enable investigation of this critical DSRCT subpopulation. Despite lower sensitivity to chemotherapy, the DSRCT CSC model remained sensitive to knockdown of the EWSR1-WT1 fusion protein, suggesting that future therapies directed against this oncogenic driver have the potential to treat both DSRCT bulk tumor and CSCs.

14.
Oncogenesis ; 11(1): 18, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443736

RESUMEN

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive malignant cancer caused by a chromosomal translocation t(11;22)(p13;q12) that produces an oncogenic transcription factor, EWSR1-WT1. EWSR1-WT1 is essential for the initiation and progression of DSRCT. However, the precise mechanism by which EWSR1-WT1 drives DSRCT oncogenesis remains unresolved. Through our integrative gene expression analysis, we identified Salt Inducible Kinase 1 (SIK1) as a direct target of EWSR1-WT1. SIK1 as a member of the AMPK related kinase is involved in many biological processes. We showed that depletion of SIK1 causes inhibition of tumor cell growth, similar to the growth inhibition observed when EWSR1-WT1 is depleted. We further showed that silencing SIK1 leads to cessation of DNA replication in DSRCT cells and inhibition of tumor growth in vivo. Lastly, combined inhibition of SIK1 and CHEK1with small molecule inhibitors, YKL-05-099 and prexasertib, respectively, showed enhanced cytotoxicity in DSRCT cells compared to inhibition of either kinases alone. This work identified SIK1 as a new potential therapeutic target in DSRCT and the efficacy of SIK1 inhibition may be improved when combined with other intervention strategies.

15.
Mol Cancer Res ; 20(5): 722-734, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149545

RESUMEN

Targeted therapy of ROS1-fusion-driven non-small cell lung cancer (NSCLC) has achieved notable clinical success. Despite this, resistance to therapy inevitably poses a significant challenge. MYC amplification was present in ∼19% of lorlatinib-resistant ROS1-driven NSCLC. We hypothesized that MYC overexpression drives ROS1-TKI resistance. Using complementary approaches in multiple models, including a MYC-amplified patient-derived cell line and xenograft (LUAD-0006), we established that MYC overexpression induces broad ROS1-TKI resistance. Pharmacologic inhibition of ROS1 combined with MYC knockdown were essential to completely suppress LUAD-0006 cell proliferation compared with either treatment alone. We interrogated cellular signaling in ROS1-TKI-resistant LUAD-0006 and discovered significant differential regulation of targets associated with cell cycle, apoptosis, and mitochondrial function. Combinatorial treatment of mitochondrial inhibitors with crizotinib revealed inhibitory synergism, suggesting increased reliance on glutamine metabolism and fatty-acid synthesis in chronic ROS1-TKI treated LUAD-0006 cells. In vitro experiments further revealed that CDK4/6 and BET bromodomain inhibitors effectively mitigate ROS1-TKI resistance in MYC-overexpressing cells. Notably, in vivo studies demonstrate that tumor control may be regained by combining ROS1-TKI and CDK4/6 inhibition. Our results contribute to the broader understanding of ROS1-TKI resistance in NSCLC. IMPLICATIONS: This study functionally characterizes MYC overexpression as a novel form of therapeutic resistance to ROS1 tyrosine kinase inhibitors in non-small cell lung cancer and proposes rational combination treatment strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas
16.
Cancer Res ; 82(6): 1110-1127, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074756

RESUMEN

Kinase fusions have been identified in a growing subset of sarcomas, but a lack of preclinical models has impeded their functional analysis as therapeutic targets in the sarcoma setting. In this study, we generated models of sarcomas bearing kinase fusions and assessed their response to molecularly targeted therapy. Immortalized, untransformed human mesenchymal stem cells (HMSC), a putative cell of origin of sarcomas, were modified using CRISPR-Cas9 to harbor a RET chromosomal translocation (HMSC-RET). In parallel, patient-derived models of RET- and NTRK-rearranged sarcomas were generated. Expression of a RET fusion activated common proliferation and survival pathways and transformed HMSC cells. The HMSC-RET models displayed similar behavior and response to therapy as the patient-derived counterparts in vitro and in vivo. Capicua (CIC)-mediated suppression of negative MAPK pathway regulators was identified as a potential mechanism by which these sarcomas compensate for RET or NTRK inhibition. This CIC-mediated feedback reactivation was blocked by coinhibition of the MAPK pathway and RET or NTRK in the respective models. Importantly, the combination of RET and ERK inhibitors was more effective than single agents at blocking tumor growth in vivo. This work offers new tools and insights to improve targeted therapy approaches in kinase-addicted sarcomas and supports upfront combination therapy to prolong responses. SIGNIFICANCE: Novel models of kinase-rearranged sarcomas show that MAPK pathway feedback activation dampens responses to tyrosine kinase inhibitors, revealing the potential of combinatorial therapies to combat these tumors.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Inhibidores de Proteínas Quinasas , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Sarcoma/metabolismo , Transducción de Señal , Neoplasias de los Tejidos Blandos/patología
17.
Artículo en Inglés | MEDLINE | ID: mdl-35012940

RESUMEN

Spindle cell/sclerosing rhabdomyosarcoma (ssRMS) is a rare subtype of rhabdomyosarcoma, commonly harboring a gain-of-function L122R mutation in the muscle-specific master transcription factor MYOD1. MYOD1-mutated ssRMS is almost invariably fatal, and development of novel therapeutic approaches based on the biology of the disease is urgently needed. MYOD1 L122R affects the DNA-binding domain and is believed to confer MYC-like properties to MYOD1, driving oncogenesis. Moreover, the majority of the MYOD1-mutated ssRMS harbor additional alterations activating the PI3K/AKT pathway. It is postulated that the PI3K/AKT pathway cooperates with MYOD1 L122R. To address this biological entity, we established and characterized a new patient-derived ssRMS cell line OHSU-SARC001, harboring MYOD1 L122R as well as alterations in PTEN, PIK3CA, and GNAS We explored the functional impact of these aberrations on oncogenic signaling with gain-of-function experiments in C2C12 murine muscle lineage cells. These data reveal that PIK3CAI459_T462del, the novel PIK3CA variant discovered in this patient specimen, is a constitutively active kinase, albeit to a lesser extent than PI3KCAE545K, a hotspot oncogenic mutation. Furthermore, we examined the effectiveness of molecularly targeted PI3K/AKT/mTOR and RAS/MAPK inhibitors to block oncogenic signaling and suppress the growth of OHSU-SARC001 cells. Dual PI3K/mTOR (LY3023414, bimiralisib) and AKT inhibitors (ipatasertib, afuresertib) induced dose-dependent reductions in cell growth. However, mTOR-selective inhibitors (everolimus, rapamycin) alone did not exert cytotoxic effects. The MEK1/2 inhibitor trametinib did not impact proliferation even at the highest doses tested. Our data suggest that molecularly targeted strategies may be effective in PI3K/AKT/mTOR-activated ssRMS. Taken together, these data highlight the importance of utilizing patient-derived models to assess molecularly targetable treatments and their potential as future treatment options.


Asunto(s)
Proteína MioD , Fosfatidilinositol 3-Quinasas , Rabdomiosarcoma , Adulto , Animales , Línea Celular Tumoral , Niño , Cromograninas , Subunidades alfa de la Proteína de Unión al GTP Gs , Humanos , Ratones , Mutación , Proteína MioD/genética , Oncogenes , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Rabdomiosarcoma/genética , Factores de Transcripción
18.
NPJ Precis Oncol ; 6(1): 88, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418460

RESUMEN

MEK inhibitors (MEKi) have limited efficacy in KRAS mutant lung adenocarcinoma (LUAD) patients, and this is attributed to both intrinsic and adaptive mechanisms of drug resistance. While many studies have focused on the former, there remains a dearth of data regarding acquired resistance to MEKi in LUAD. We established trametinib-resistant KRAS mutant LUAD cells through dose escalation and performed targeted MSK-IMPACT sequencing to identify drivers of MEKi resistance. Comparing resistant cells to their sensitive counterparts revealed alteration of genes associated with trametinib response. We describe a state of "drug addiction" in resistant cases where cells are dependent on continuous culture in trametinib for survival. We show that dependence on ERK2 suppression underlies this phenomenon and that trametinib removal hyperactivates ERK, resulting in ER stress and apoptosis. Amplification of KRASG12C occurs in drug-addicted cells and blocking mutant-specific activity with AMG 510 rescues the lethality associated with trametinib withdrawal. Furthermore, we show that increased KRASG12C expression is lethal to other KRAS mutant LUAD cells, consequential to ERK hyperactivation. Our study determines the drug-addicted phenotype in lung cancer is associated with KRAS amplification and demonstrates that toxic acquired genetic changes can develop de novo in the background of MAPK suppression with MEK inhibitors. We suggest that the presence of mutant KRAS amplification in patients may identify those that may benefit from a "drug holiday" to circumvent drug resistance. These findings demonstrate the toxic potential of hyperactive ERK signaling and highlight potential therapeutic opportunities in patients bearing KRAS mutations.

19.
Oncogene ; 41(21): 2973-2983, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35459782

RESUMEN

Activating RAS mutations are found in a subset of fusion-negative rhabdomyosarcoma (RMS), and therapeutic strategies to directly target RAS in these tumors have been investigated, without clinical success to date. A potential strategy to inhibit oncogenic RAS activity is the disruption of RAS prenylation, an obligate step for RAS membrane localization and effector pathway signaling, through inhibition of farnesyltransferase (FTase). Of the major RAS family members, HRAS is uniquely dependent on FTase for prenylation, whereas NRAS and KRAS can utilize geranylgeranyl transferase as a bypass prenylation mechanism. Tumors driven by oncogenic HRAS may therefore be uniquely sensitive to FTase inhibition. To investigate the mutation-specific effects of FTase inhibition in RMS we utilized tipifarnib, a potent and selective FTase inhibitor, in in vitro and in vivo models of RMS genomically characterized for RAS mutation status. Tipifarnib reduced HRAS processing, and plasma membrane localization leading to decreased GTP-bound HRAS and decreased signaling through RAS effector pathways. In HRAS-mutant cell lines, tipifarnib reduced two-dimensional and three-dimensional cell growth, and in vivo treatment with tipifarnib resulted in tumor growth inhibition exclusively in HRAS-mutant RMS xenografts. Our data suggest that small molecule inhibition of FTase is active in HRAS-driven RMS and may represent an effective therapeutic strategy for a genomically-defined subset of patients with RMS.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Farnesiltransferasa/genética , Genes ras , Humanos , Prenilación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética
20.
Cancer Discov ; 12(5): 1233-1247, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35135829

RESUMEN

NRG1 rearrangements are recurrent oncogenic drivers in solid tumors. NRG1 binds to HER3, leading to heterodimerization with other HER/ERBB kinases, increased downstream signaling, and tumorigenesis. Targeting ERBBs, therefore, represents a therapeutic strategy for these cancers. We investigated zenocutuzumab (Zeno; MCLA-128), an antibody-dependent cellular cytotoxicity-enhanced anti-HER2xHER3 bispecific antibody, in NRG1 fusion-positive isogenic and patient-derived cell lines and xenograft models. Zeno inhibited HER3 and AKT phosphorylation, induced expression of apoptosis markers, and inhibited growth. Three patients with chemotherapy-resistant NRG1 fusion-positive metastatic cancer were treated with Zeno. Two patients with ATP1B1-NRG1-positive pancreatic cancer achieved rapid symptomatic, biomarker, and radiographic responses and remained on treatment for over 12 months. A patient with CD74-NRG1-positive non-small cell lung cancer who had progressed on six prior lines of systemic therapy, including afatinib, responded rapidly to treatment with a partial response. Targeting HER2 and HER3 simultaneously with Zeno is a novel therapeutic paradigm for patients with NRG1 fusion-positive cancers. SIGNIFICANCE: NRG1 rearrangements encode chimeric ligands that activate the ERBB receptor tyrosine kinase family. Here we show that targeting HER2 and HER3 simultaneously with the bispecific antibody Zeno leads to durable clinical responses in patients with NRG1 fusion-positive cancers and is thus an effective therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos Biespecíficos , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Reordenamiento Génico , Humanos , Inmunoglobulina G , Neoplasias Pulmonares/genética , Neurregulina-1/genética , Receptor ErbB-2 , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA