RESUMEN
Blending waste biomass for co-pyrolysis is generally regarded as a promising method for reduced-volume, value-added, and hazard-free treatment of sewage sludge. Hence, a comparison was made of the co-pyrolysis of sewage sludge with rice husk and with bamboo sawdust (1:1, w/w) at 400 and 700 °C and the properties and behaviors of selected metals in the corresponding biochars. Biochar produced by co-pyrolysis with both biomass wastes had larger (5 × 5 rectangle) aromatic clusters than did the sewage sludge biochar (4 × 4 rectangle) using the rectangle-like model on the basis of biochar molar H/C ratio, indicating increased aromaticity of the co-pyrolyzed biochars. Moreover, the molar O/C ratio of the sewage sludge-bamboo biochar was much lower than that of the sewage sludge-husk biochar, especially after pyrolysis at 700 °C (0.02 vs 0.27), suggesting greater recalcitrance to ageing. Co-pyrolysis of sewage sludge with husk invariably resulted in a higher percentage of metals studied in the residual fraction than co-pyrolysis with sawdust at the same temperature, leading to a lower risk index (14.2) because of the maximum metal encapsulation in the sewage sludge-husk biochar at 700 °C. Overall, co-pyrolysis of sewage sludge with husk provided higher metal immobilization but apparently lower biochar stability than co-pyrolysis with sawdust. These results provide an alternatively practical strategy for the safe disposal of sewage sludge and biomass wastes.
Asunto(s)
Oryza , Sasa , Carbón Orgánico , Pirólisis , Aguas del AlcantarilladoRESUMEN
The CAD hypothesis holds that there is mapping between the three moral emotions (contempt, anger and disgust) and the three moral codes of community, autonomy and divinity. Different from previous designs to establish correlations between emotions and eliciting situations which instantiate moral codes, this paper takes a narratological approach to the CAD hypothesis by examining the relationships between the three moral emotions and moral judgment relating to the three moral codes in the context of eliciting situations. First, similarity data pertaining to eliciting situations were collected by using the Order k/n-1 with fixed K method. Second, the participants were instructed to write down both their responses and justifications of their responses to the eliciting situations. A narratological analysis of the justifications of responses show that they vary along three variables: narrator, character, and basis (mostly in the form of moral judgment). The descriptive statistics of participants' responses and of their justifications show that more than a half of responses are in the categories of anger (24.8%), disgust (20.7), and contempt (7.7%) and that about 60% of justifications contain a component of moral judgment based on the three moral codes of autonomy (30.03%), divinity (18.1), and community (11.82%). Correspondence analyses among eliciting situations, emotional responses and the three variables of justifications, together with results from the Multidimensional Scaling analysis of the similarity data, show that the CAD hypothesis is largely supported if mappings are set between the emotions in question and moral judgment concerning the eliciting situations (the basis variable of justification) and that the hypothesis is conditioned by the variable of character.
RESUMEN
In July 2019-July 2020, we conducted a field trial to examine the effects of nitrogen addition (60 kg N·hm-2·a-1), biochar application (10 t·hm-2), and their combination on soil N2O emission and the relationship between soil N2O emission and environmental factors in a typical Moso bamboo (Phyllostachys edulis) plantation in Hangzhou City of Zhejiang Province. Soil N2O flux of Moso bamboo plantation was measured by the static chamber-gas chromatography technique. The results showed that nitrogen addition treatment increased the annual cumulative N2O emission by 14.6%, while biochar application and the combination treatment reduced it by 20.8% and 10.6%, respectively. Soil N2O flux rate was significantly correlated with soil temperature, NO3--N concentration, urease and protease activities, and soil NH4+-N concentration across all treatments. In conclusion, under the background of nitrogen deposition, the application of biochar would have a significant reduction effect on soil N2O fluxes in Moso bamboo plantations.
Asunto(s)
Nitrógeno , Suelo , Carbón Orgánico , PoaceaeRESUMEN
Waste produced in various fields and activities in society has been increasing, thereby causing immediate environmental harm and a serious-global problem. Recently, the attitude towards waste has changed along with innovations making waste as a new resource. Agricultural and forestry wastes (AFWs) are globally produced in huge amounts and thought to be an important resource to be used for decreasing the dependence on fossil fuels. The central issue is to take use of AFW for different types of products making it a source of energy and at the same time refining it for the production of valuable chemicals. In this review, we present an overview of the composition and pretreatment of AFWs, thermochemical liquefaction including direct liquefaction and indirect liquefaction (liquid products from syngas by gasification) for producing biofuels and/or chemicals. The following two key points were discussed in-depth: the solvent or medium of thermochemical conversion and circular economy of liquid products. The concept of bio-economy entails economic use of waste streams, leading to the widened assessment of biomass use for energy where sustainability is a key issue coined in the circular economy. The smart use of AFWs requires a combination of available waste streams and local technical solutions to meet sustainability criteria.
RESUMEN
Dissolved organic matter (DOM) has an important effect on soil fertility, activity of microorganisms and transport of contaminants. In this study, DOM released by the hydrochar and biochar prepared under various conditions from pig manure, was assessed using a combination of UV-Visible spectroscopy, fluorescence excitation-emission (EEM) spectrophotometry and 1H-nuclear magnetic resonance (1H NMR). The dissolved organic carbon (DOC) extracted from the hydrochar and biochar ranged from 3.34-11.96% and 0.38-0.48%, respectively, and the highest DOM was released by HCK0.5 (180 °C and 0.5% KOH). The aliphatic compounds were most common in DOM which mainly included three humic acid-like and one protein-like substance. The hydrochar-DOM had a larger molecular weight and lower aromaticity than biochar-DOM, but the effect of temperature on the DOM characteristics of hydrochar and biochar was opposite. The acidic treatment increased the content of functional groups containing oxygen and nitrogen in hydrochar-DOM, and alkaline treatment increased the content of aliphatic compounds. The results obtained are beneficial to select carbonation process and guide the rational application of hydrochar and biochar from pig manure in soil remediation field.
Asunto(s)
Estiércol , Animales , Carbón Orgánico , Sustancias Húmicas , Suelo , Espectrometría de Fluorescencia , PorcinosRESUMEN
The effects of reaction temperature, residence time, sulfuric acid and potassium hydroxide on the total concentration and speciation of N and P, potentially toxic elements (salts and metal elements) of pig manure during its hydrothermal carbonization (HTC) were investigated. Concentrations of Cl, K, Na and Mg in the hydrochars were much lower but total N, P and nitrate-nitrogen (NO3--N) contents were significantly higher than in untreated pig manure. The acid-extractable fractions of Cu and Zn in hydrochars were 0.03-0.63 and 0.17-0.66 times lower than those in pig manure and decreased significantly with increasing reaction temperature. The addition of sulfuric acid (H2SO4) or potassium hydroxide (KOH) in HTC reduced the contents of P, Ca, Mg, Cl and heavy metal elements (HMEs) in hydrochars, and the removal rates of Cu and Zn were up to 55% and 59%, respectively. Overall, the rapid treatment of pig manure by HTC reduced the harm of salts and HMEs, and effectively recovered the nutrients in pig manure. The HTC under alkaline conditions was desirable for optimizing the main elemental composition of the hydrochars.
Asunto(s)
Estiércol , Eliminación de Residuos Líquidos/métodos , Animales , Carbono , Hidróxidos/química , Estiércol/análisis , Metales Pesados/análisis , Minerales/análisis , Nitrógeno/análisis , Fósforo/química , Compuestos de Potasio/química , Ácidos Sulfúricos/química , Porcinos , Temperatura , Factores de TiempoRESUMEN
In China, intensive pig farming has led to serious environmental issues with the need to dispose off large quantities of pig manure. Chinese agriculture relies on high inputs of chemical fertilizers leading to gradual decreasing organic matter contents in many arable soils. We propose that hydrochars produced from pig manure could potentially replace chemical fertilizers and, at the same time, resolve the waste disposal problem. The hydrochars used in this study were produced from pig manure at five different pyrolysis temperatures ranging between 160 and 240 °C and three residence times (1, 5, and 8 h). All hydrochars were assessed for composition of major elements. Results showed that the yield and organic matter (OM) contents in hydrochars were 50-74% and 40-56%, respectively. The concentrations of total nitrogen (N), potassium (K2O), and OM in the hydrochar decreased, whereas contents of phosphorus (P2O5), copper (Cu), and zinc (Zn) increased with increasing reaction temperature and time. Hydrothermal carbonization of pig manure is a rapid method for transforming pig manure into an organic fertilizer, but it is necessary to assess the potential soil contamination risk of Cu and Zn for the pig manure hydrochar as organic fertilizer.
Asunto(s)
Carbón Orgánico , Fertilizantes , Estiércol/análisis , Porcinos , Crianza de Animales Domésticos , Animales , Carbono , China , Cobre/análisis , Nitrógeno/análisis , Fósforo , Suelo/química , Contaminantes del Suelo/análisis , Zinc/análisisRESUMEN
The effect of phosphoric acid addition to the feed-water on the speciation and transformation behaviour of potentially toxic elements (PTEs) in the hydrothermal carbonisation (HTC) of sewage sludge was explored. Over 70% of each of the PTEs (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) was in the directly bioavailable and potentially bioavailable fraction in the raw sludge, and especially Cu and Zn at 97.5 and 98.6%, respectively. Through the HTC process the directly bioavailable and potentially bioavailable fractions of PTEs in the sludge hydrochar clearly decreased, and the residual fraction in the hydrochar showed an observable increase. Further stabilisation of PTEs in hydrochar occurred during HTC with the addition of phosphoric acid solution to the feed-water. As the concentration of phosphoric acid in the feed-water increased the percentages of the residual fraction of Cd, Cr, Ni, Pb and Zn in hydrochars each exceeded 80%, but different PTEs behaved differently with increasing phosphate molar ratio in the feed-water. When the molar ratio of phosphate was 15%, the percentages of the residual fractions of Cd, Mn and Zn reached their maximum values in accordance with the changing trend in aromaticity of the hydrochar. Moreover, a large number of phosphate mineral crystals effectively occluded the PTEs in hydrochar. In conclusion, the addition of phosphoric acid to the feed-water during HTC further deactivated PTEs leading to a substantial decline in the potential environmental risk associated with the land application of the sewage sludge.