Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(14): 3095-3110.e19, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321219

RESUMEN

The human body contains thousands of metabolites derived from mammalian cells, the microbiota, food, and medical drugs. Many bioactive metabolites act through the engagement of G-protein-coupled receptors (GPCRs); however, technological limitations constrain current explorations of metabolite-GPCR interactions. Here, we developed a highly multiplexed screening technology called PRESTO-Salsa that enables simultaneous assessment of nearly all conventional GPCRs (>300 receptors) in a single well of a 96-well plate. Using PRESTO-Salsa, we screened 1,041 human-associated metabolites against the GPCRome and uncovered previously unreported endogenous, exogenous, and microbial GPCR agonists. Next, we leveraged PRESTO-Salsa to generate an atlas of microbiome-GPCR interactions across 435 human microbiome strains from multiple body sites, revealing conserved patterns of cross-tissue GPCR engagement and activation of CD97/ADGRE5 by the Porphyromonas gingivalis protease gingipain K. These studies thus establish a highly multiplexed bioactivity screening technology and expose a diverse landscape of human, diet, drug, and microbiota metabolome-GPCRome interactions.


Asunto(s)
Microbiota , Receptores Acoplados a Proteínas G , Animales , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Metaboloma , Mamíferos/metabolismo
2.
Nature ; 628(8006): 171-179, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509360

RESUMEN

The myriad microorganisms that live in close association with humans have diverse effects on physiology, yet the molecular bases for these impacts remain mostly unknown1-3. Classical pathogens often invade host tissues and modulate immune responses through interactions with human extracellular and secreted proteins (the 'exoproteome'). Commensal microorganisms may also facilitate niche colonization and shape host biology by engaging host exoproteins; however, direct exoproteome-microbiota interactions remain largely unexplored. Here we developed and validated a novel technology, BASEHIT, that enables proteome-scale assessment of human exoproteome-microbiome interactions. Using BASEHIT, we interrogated more than 1.7 million potential interactions between 519 human-associated bacterial strains from diverse phylogenies and tissues of origin and 3,324 human exoproteins. The resulting interactome revealed an extensive network of transkingdom connectivity consisting of thousands of previously undescribed host-microorganism interactions involving 383 strains and 651 host proteins. Specific binding patterns within this network implied underlying biological logic; for example, conspecific strains exhibited shared exoprotein-binding patterns, and individual tissue isolates uniquely bound tissue-specific exoproteins. Furthermore, we observed dozens of unique and often strain-specific interactions with potential roles in niche colonization, tissue remodelling and immunomodulation, and found that strains with differing host interaction profiles had divergent interactions with host cells in vitro and effects on the host immune system in vivo. Overall, these studies expose a previously unexplored landscape of molecular-level host-microbiota interactions that may underlie causal effects of indigenous microorganisms on human health and disease.


Asunto(s)
Bacterias , Interacciones Microbiota-Huesped , Microbiota , Filogenia , Proteoma , Simbiosis , Animales , Femenino , Humanos , Ratones , Bacterias/clasificación , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/patogenicidad , Interacciones Microbiota-Huesped/inmunología , Interacciones Microbiota-Huesped/fisiología , Tropismo al Anfitrión , Microbiota/inmunología , Microbiota/fisiología , Especificidad de Órganos , Unión Proteica , Proteoma/inmunología , Proteoma/metabolismo , Reproducibilidad de los Resultados
3.
Nature ; 596(7870): 114-118, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34262174

RESUMEN

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.


Asunto(s)
Inmunidad Adaptativa , Candida albicans/inmunología , Candida albicans/fisiología , Interacciones Huésped-Patógeno/inmunología , Simbiosis/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Fúngicos/inmunología , Candida albicans/patogenicidad , Colitis/inmunología , Colitis/microbiología , Colitis/patología , Femenino , Vacunas Fúngicas/inmunología , Microbioma Gastrointestinal/inmunología , Humanos , Hifa/inmunología , Inmunoglobulina A/inmunología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
4.
J Virol ; 97(12): e0133823, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38009916

RESUMEN

IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.


Asunto(s)
Betacoronavirus 1 , Infecciones por Coronavirus , Exocitosis , Lisosomas , Neuronas , Animales , Ratones , Betacoronavirus 1/metabolismo , Lisosomas/enzimología , Lisosomas/metabolismo , Lisosomas/virología , Virus de la Hepatitis Murina/metabolismo , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , SARS-CoV-2/metabolismo , Porcinos/virología , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón Vacuolares/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología
5.
Appl Environ Microbiol ; 90(7): e0052824, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38916293

RESUMEN

Xenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control. IMPORTANCE: Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.


Asunto(s)
Amidas , Proteínas Bacterianas , Simbiosis , Factores de Transcripción , Xenorhabdus , Xenorhabdus/genética , Xenorhabdus/metabolismo , Xenorhabdus/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Amidas/farmacología , Amidas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Nematodos/microbiología
6.
J Virol ; 95(19): e0015321, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34287041

RESUMEN

Orf virus (ORFV) is a highly epitheliotropic parapoxvirus with zoonotic significance that induces proliferative lesions in the skin of sheep, goats, and humans. Several viral proteins carried by ORFV, including nuclear factor-κB (NF-κB) inhibitors, play important roles in hijacking host-associated proteins for viral evasion of the host innate immune response. However, the roles of proteins with unknown functions in viral replication and latent infection remain to be explored. Here, we present data demonstrating that the ORF120, an early-late ORFV-encoded protein, activates the NF-κB pathway in the early phase of infection, which implies that ORFV may regulate NF-κB through a biphasic mechanism. A DUAL membrane yeast two-hybrid system and coimmunoprecipitation experiments revealed that the ORF120 protein interacts with Ras-GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1). The overexpression of the ORF120 protein can efficiently increase the expression of G3BP1 and nuclear translocation of NF-κB-p65 in primary ovine fetal turbinate (OFTu) and HeLa cells. The knockdown of G3BP1 significantly decreased ORF120-induced NF-κB activation, indicating that G3BP1 is involved in ORF120-induced NF-κB pathway activation. A dual-luciferase reporter assay revealed that ORF120 could positively regulate the NF-κB pathway through the full-length G3BP1 or the domain of G3BP1RRM+RGG. In conclusion, we demonstrate, for the first time, that the ORF120 protein is capable of positively regulating NF-κB signaling by interacting with G3BP1, providing new insights into ORFV pathogenesis and a theoretical basis for antiviral drug design. IMPORTANCE As part of the host innate response, the nuclear factor-κB (NF-κB) pathway plays a partial antiviral role in nature by regulating the innate immune response. Thus, the NF-κB pathway is probably the most frequently targeted intracellular pathway for subversion by anti-immune modulators that are carried by a wide range of pathogens. Various viruses, including poxviruses, carry several proteins that prepare the host cell for viral replication by inhibiting cytoplasmic events, leading to the initiation of NF-κB transcriptional activity. However, NF-κB activity is hypothesized to facilitate viral replication to a great extent. The significance of our research is in the exploration of the activation mechanism of NF-κB induced by the Orf virus (ORFV) ORF120 protein interacting with G3BP1, which helps not only to explain the ability of ORFV to modulate the immune response through the positive regulation of NF-κB but also to show the mechanism by which the virus evades the host innate immune response.


Asunto(s)
ADN Helicasas/metabolismo , Ectima Contagioso/virología , FN-kappa B/metabolismo , Virus del Orf/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas Virales/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , ADN Helicasas/química , Células HeLa , Humanos , Virus del Orf/genética , Virus del Orf/crecimiento & desarrollo , Virus del Orf/patogenicidad , Proteínas de Unión a Poli-ADP-Ribosa/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas/química , Proteínas con Motivos de Reconocimiento de ARN/química , Ovinos , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Transcripción Genética , Activación Transcripcional , Proteínas Virales/genética , Virulencia
7.
Virol J ; 19(1): 226, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578037

RESUMEN

BACKGROUND: Porcine hemagglutinating encephalomyelitis virus (PHEV), a member of the genus Betacoronavirus, is the causative agent of neurological disease in pigs. No effective therapeutics are currently available for PHEV infection. Resveratrol has been shown to exert neuroprotective and antiviral effects. Here resveratrol was investigated for its ability to inhibit PHEV replication in nerve cells and central nervous system tissues. METHODS: Anti-PHEV effect of resveratrol was evaluated using an in vitro cell-based PHEV infection model and employing a mouse PHEV infection model. The collected cells or tissues were used for quantitative PCR analysis, western blot analysis, or indirect immunofluorescence assay. The supernatants were collected to quantify viral loads by TCID50 assay in vitro. EC50 and CC50 were determined by dose-response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral versus cytotoxic activity. RESULTS: Our results showed that resveratrol treatment reduced PHEV titer in a dose-dependent manner, with a 50% inhibition concentration of 6.24 µM. A reduction of > 70% of viral protein expression and mRNA copy number and a 19-fold reduction of virus titer were achieved when infected cells were treated with 10 µM resveratrol in a pre-treatment assay. Quantitative PCR analysis and TCID50 assay results revealed that the addition of 10 µM resveratrol to cells after adsorption of PHEV significantly reduced 56% PHEV mRNA copy number and eightfold virus titer. 10 µM resveratrol treatment reduced 46% PHEV mRNA copy number and fourfold virus titer in virus inactivation assay. Moreover, the in vivo data obtained in this work also demonstrated that resveratrol inhibited PHEV replication, and anti-PHEV activities of resveratrol treatment via intranasal installation displayed better than oral gavage. CONCLUSION: These results indicated that resveratrol exerted antiviral effects under various drug treatment and virus infection conditions in vitro and holds promise as a treatment for PHEV infection in vivo.


Asunto(s)
Betacoronavirus 1 , Ratones , Porcinos , Animales , Resveratrol/farmacología , Resveratrol/metabolismo , Betacoronavirus 1/genética , Betacoronavirus 1/metabolismo , Neuronas , Antivirales/farmacología , Antivirales/metabolismo , Replicación Viral
8.
Virus Genes ; 58(5): 403-413, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35780442

RESUMEN

Orf virus (ORFV, species Orf virus) belongs to the typical species of the Parapoxvirus genus of the family Poxviridae, which infects sheep, goats, and humans with worldwide distribution. Although outbreaks of Orf have been reported sequentially in several Chinese provinces, the epidemiology of Orf and genetic diversity of ORFV strains still needs to be further characterized. To further reveal the genomic organization of the ORFV-GZ18 and ORFV-CL18 isolates, the complete genome sequences of two recently obtained ORFV isolates were sequenced using the next-generation sequencing technology and analyzed, which had been deposited in the GenBank database under accession number MN648218 and MN648219, respectively. The complete genomic sequence of ORFV-CL18 was 138,495 bp in length, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 3481 bp at both ends, which has genomic structure typical Parapoxviruses. The overall genomic organization of the fully sequenced genome of ORFV-GZ18 was consistent with ORFV-CL18 genome, with a complete genome size of 138,446 nucleotides, containing 131 ORFs flanked by ITRs of 3469 bp. Additionally, the overall G + C contents of ORFV-GZ18 and ORFV-CL18 genome sequences were about 63.9% and 63.8%, respectively. The phylogenetic analysis showed that both ORFV-GZ18 and ORFV-CL18 were genetically closely related to ORFV-SY17 derived from sheep. In summary, the complete genomic sequences of ORFV-GZ18 and ORFV-CL18 are reported, with the hope it will be useful to investigate the host range, geographic distribution, and genetic evolution of the virus in Southern West and Northern East China.


Asunto(s)
Ectima Contagioso , Virus del Orf , Animales , China/epidemiología , Genómica , Cabras , Humanos , Nucleótidos , Virus del Orf/genética , Filogenia , Ovinos
9.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682877

RESUMEN

The recent novel coronavirus (SARS-CoV-2) disease (COVID-19) outbreak created a severe public health burden worldwide. Unfortunately, the SARS-CoV-2 variant is still spreading at an unprecedented speed in many countries and regions. There is still a lack of effective treatment for moderate and severe COVID-19 patients, due to a lack of understanding of the SARS-CoV-2 life cycle. Lysosomes, which act as "garbage disposals" for nearly all types of eukaryotic cells, were shown in numerous studies to support SARS-CoV-2 replication. Lysosome-associated pathways are required for virus entry and exit during replication. In this review, we summarize experimental evidence demonstrating a correlation between lysosomal function and SARS-CoV-2 replication, and the development of lysosomal perturbation drugs as anti-SARS-CoV-2 agents.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/uso terapéutico , Humanos , Lisosomas/metabolismo , Replicación Viral
10.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541856

RESUMEN

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic virus that causes diffuse neuronal infection with neurological damage and high mortality. Virus-induced cytoskeletal dynamics are thought to be closely related to this type of nerve damage. Currently, the regulation pattern of the actin cytoskeleton and its molecular mechanism remain unclear when PHEV enters the host cells. Here, we demonstrate that entry of PHEV into N2a cells induces a biphasic remodeling of the actin cytoskeleton and a dynamic change in cofilin activity. Viral entry is affected by the disruption of actin kinetics or alteration of cofilin activity. PHEV binds to integrin α5ß1 and then initiates the integrin α5ß1-FAK signaling pathway, leading to virus-induced early cofilin phosphorylation and F-actin polymerization. Additionally, Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division cycle 42 (Cdc42), and downstream regulatory gene p21-activated protein kinases (PAKs) are recruited as downstream mediators of PHEV-induced dynamic changes of the cofilin activity pathway. In conclusion, we demonstrate that PHEV utilizes the integrin α5ß1-FAK-Rac1/Cdc42-PAK-LIMK-cofilin pathway to cause an actin cytoskeletal rearrangement to promote its own invasion, providing theoretical support for the development of PHEV pathogenic mechanisms and new antiviral targets.IMPORTANCE PHEV, a member of the Coronaviridae family, is a typical neurotropic virus that primarily affects the nervous system of piglets to produce typical neurological symptoms. However, the mechanism of nerve damage caused by the virus has not been fully elucidated. Actin is an important component of the cytoskeleton of eukaryotic cells and serves as the first obstacle to the entry of pathogens into host cells. Additionally, the morphological structure and function of nerve cells depend on the dynamic regulation of the actin skeleton. Therefore, exploring the mechanism of neuronal injury induced by PHEV from the perspective of the actin cytoskeleton not only helps elucidate the pathogenesis of PHEV but also provides a theoretical basis for the search for new antiviral targets. This is the first report to define a mechanistic link between alterations in signaling from cytoskeleton pathways and the mechanism of PHEV invading nerve cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Betacoronavirus 1/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Integrina alfa5beta1/metabolismo , Degeneración Nerviosa/veterinaria , Animales , Línea Celular , Infecciones por Coronavirus/patología , Degeneración Nerviosa/virología , Porcinos , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/metabolismo
11.
J Cell Physiol ; 234(7): 11227-11234, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30488492

RESUMEN

As the intestinal epithelium is vulnerable to oxidative stress because of frequent enterocyte renewal and continuous exposure to exogenous agents, it is meaningful to figure out how the epithelial cells exert antioxidant function. We previously synthesized a novel biogenic nanoselenium (BNS) particles and proved that BNS could effectively improve intestinal antioxidative function through activating Nrf2-ARE pathway. The objective of the present study was to investigate the mechanism by which BNS activate Nrf2-ARE pathway on the physiological function of intestinal epithelial cells. In the present study, we demonstrated that treatment of IPEC-J2 cells with BNS particles not only elevated the levels of downstream proteins of nuclear factor (erythroid-derived-2)-like 2 (Nrf2) such as heme oxygenase-1 and NQO-1 in a time-dependent manner which started to weaken at 12 hr after treatment but also significantly activated Nrf2, mitogen-activated protein kinase (MAPK), and protein kinase B (AKT) pathway in a time-dependent manner within 24 hr. BNS particles significantly increased the content of phosphorylated-Nrf2, without evident influence on the level of Kelch-like ECH-associated protein 1 (Keap1). Moreover, BNS also induced the activation of p38, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase, and AKT while phosphorylating Nrf2. Using specific protein kinase inhibitors, we found that the Nrf2-phosphorylating and antioxidative effects of BNS particles were abolished when p38, ERK1/2, and AKT were significantly inhibited. Overall, our data demonstrated that BNS particles activated Nrf2-ARE pathway through p38, ERK1/2, and AKT mediated-phosphorylation of Nrf2 to improve the antioxidant function of intestinal epithelial cells.


Asunto(s)
Antioxidantes/farmacología , Mucosa Intestinal/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Selenio/farmacología , Proteínas de Transporte Vesicular/metabolismo , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Nanopartículas del Metal/química , Estrés Oxidativo/fisiología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Virus Genes ; 55(4): 490-501, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31030330

RESUMEN

Orf virus (ORFV), a typical member of the Parapoxvirus genus within the family Poxviridae, which is the causative agent of Orf, a common epitheliotropic viral disease of sheep, goats, wild ruminants, and humans. In the present study, we sequenced the complete genomic sequences of two ORFV strains (ORFV-SY17, isolated from sheep, and ORFV-NA17, isolated from goat) and conducted the comparative analysis of multiple ORFVs. The complete genomic sequence of ORFV-SY17 was at length of 140,413 bp, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 4267 bp at both ends. The ORFV-NA17 strain displayed the similar genome structure with ORFV-SY17. The whole genomic sequence of ORFV-NA17 strain was 139,287 bp in length and contained 132 ORFs flanked by ITRs of 3974 bp. The overall G+C contents of ORFV-SY17 and ORFV-NA17 genome sequences were about 63.8% and 63.7%, respectively. The ITR sequences analysis showed that ORFV-SY17 and ORFV-NA17 contained the terminal BamHI sites and conserved telomere resolution sequences at both ends of their genome. In addition, comparative analysis of ORFs among ORFV-SY17, ORFV-NA17, and other ORFV strains revealed several sequence variations caused by insertions or deletions, especially in ORFs 005 and 116, which were very likely associated with host species. Phylogenetic analysis based on the complete genome sequences revealed that ORFV-SY17 was genetically closely related to NA1/11 and HN3/12 strains derived from sheep, while ORFV-NA17 was closely related to YX strain derived from goat. The multiple alignment of deduced amino acid sequences further revealed the genetic relationship between host species and genetic variations of ORFV strains. Taken together, the availability of genomic sequences of ORFV-SY17 and ORFV-NA17 strains from Jilin Province will aid in our understanding of the genetic diversity and evolution of ORFV strains in this region and can assist in distinguishing between ORFV strains that originate in sheep and goats.


Asunto(s)
Ectima Contagioso/virología , Genoma Viral , Enfermedades de las Cabras/virología , Virus del Orf/genética , Virus del Orf/aislamiento & purificación , Enfermedades de las Ovejas/virología , Animales , China , Cabras , Humanos , Virus del Orf/clasificación , Virus del Orf/ultraestructura , Filogenia , Ovinos , Secuenciación Completa del Genoma
13.
Appl Microbiol Biotechnol ; 103(15): 6231-6243, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31147754

RESUMEN

Oxidative stress plays a detrimental role in gastrointestinal disorders. Although selenium-enriched probiotics have been shown to strengthen oxidation resistance and innate immunity, the potential mechanism remains unclear. Here, we focused on the biological function of our material, selenium-enriched Bacillus paralicheniformis SR14 (Se-BP), and investigated the antioxidative effects of Se-BP and its underlying molecular mechanism in porcine jejunum epithelial cells. First, we prepared Se-BP and quantified for its selenium and bacterial contents. Then, in vitro free radical scavenging activity was measured to evaluate the potential antioxidant effect of Se-BP. Third, to induce an appropriate oxidative stress model, we adopted different concentrations of H2O2 and determined the most suitable concentration by a methyl thiazolyl tetrazolium (MTT) assay. Regarding treatment with Se-BP and H2O2, we found that Se-BP increased cell viability and prevented lactate dehydrogenase release when administered prior to H2O2 exposure. Additionally, Se-BP markedly suppressed reactive oxygen species and malondialdehyde production in cells and effectively attenuated apoptosis. Compared with incubation with H2O2 alone, treatment with Se-BP significantly promoted phosphorylation of ERK and p38 MAPK signaling molecules. When administered with ERK and p38 MAPK inhibitors, Se-BP did not alleviate the decrease in cell viability. Our results suggest that Se-BP prevents H2O2-induced cell damage by activating the ERK/p38 MAPK signaling pathways.


Asunto(s)
Antioxidantes/metabolismo , Bacillus/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Peróxido de Hidrógeno/toxicidad , Oxidantes/toxicidad , Selenio/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Especies Reactivas de Oxígeno/análisis , Transducción de Señal , Porcinos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28956766

RESUMEN

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that invades the central nervous system (CNS) in piglets. Although important progress has been made toward understanding the biology of PHEV, many aspects of its life cycle remain obscure. Here we dissected the molecular mechanism underlying cellular entry and intracellular trafficking of PHEV in mouse neuroblastoma (Neuro-2a) cells. We first performed a thin-section transmission electron microscopy (TEM) assay to characterize the kinetics of PHEV, and we found that viral entry and transfer occur via membranous coating-mediated endo- and exocytosis. To verify the roles of distinct endocytic pathways, systematic approaches were used, including pharmacological inhibition, RNA interference, confocal microscopy analysis, use of fluorescently labeled virus particles, and overexpression of a dominant negative (DN) mutant. Quantification of infected cells showed that PHEV enters cells by clathrin-mediated endocytosis (CME) and that low pH, dynamin, cholesterol, and Eps15 are indispensably involved in this process. Intriguingly, PHEV invasion leads to rapid actin rearrangement, suggesting that the intactness and dynamics of the actin cytoskeleton are positively correlated with viral endocytosis. We next investigated the trafficking of internalized PHEV and found that Rab5- and Rab7-dependent pathways are required for the initiation of a productive infection. Furthermore, a GTPase activation assay suggested that endogenous Rab5 is activated by PHEV and is crucial for viral progression. Our findings demonstrate that PHEV hijacks the CME and endosomal system of the host to enter and traffic within neural cells, providing new insights into PHEV pathogenesis and guidance for antiviral drug design.IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV), a nonsegmented, positive-sense, single-stranded RNA coronavirus, invades the central nervous system (CNS) and causes neurological dysfunction. Neural cells are its targets for viral progression. However, the detailed mechanism underlying PHEV entry and trafficking remains unknown. PHEV is the etiological agent of porcine hemagglutinating encephalomyelitis, which is an acute and highly contagious disease that causes numerous deaths in suckling piglets and enormous economic losses in China. Understanding the viral entry pathway will not only advance our knowledge of PHEV infection and pathogenesis but also open new approaches to the development of novel therapeutic strategies. Therefore, we employed systematic approaches to dissect the internalization and intracellular trafficking mechanism of PHEV in Neuro-2a cells. This is the first report to describe the process of PHEV entry into nerve cells via clathrin-mediated endocytosis in a dynamin-, cholesterol-, and pH-dependent manner that requires Rab5 and Rab7.


Asunto(s)
Betacoronavirus 1/fisiología , Colesterol/metabolismo , Clatrina/metabolismo , Endocitosis , Internalización del Virus , Proteínas de Unión al GTP rab5/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Betacoronavirus 1/efectos de los fármacos , Betacoronavirus 1/genética , Betacoronavirus 1/patogenicidad , Línea Celular Tumoral , Dinaminas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ratones , Mutación , Neuroblastoma , Interferencia de ARN
15.
Appl Microbiol Biotechnol ; 102(7): 2941-2948, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29453632

RESUMEN

Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.


Asunto(s)
Alimentación Animal/microbiología , Alimentos Fermentados/microbiología , Microbioma Gastrointestinal , Microbiota/fisiología , Animales , Tracto Gastrointestinal/microbiología , Probióticos/administración & dosificación , Porcinos
16.
Virol J ; 14(1): 114, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619100

RESUMEN

BACKGROUND: Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. METHODS: Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID50) assay and qRT-PCR detection. RESULTS: In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. CONCLUSIONS: Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.


Asunto(s)
Ciclofilinas/metabolismo , Interacciones Huésped-Patógeno , Virus del Orf/efectos de los fármacos , Virus del Orf/fisiología , Replicación Viral/efectos de los fármacos , Animales , Western Blotting , Bovinos , Línea Celular , Ciclofilinas/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
J Immunol ; 194(4): 1882-93, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25601921

RESUMEN

Intestinal permeability plays a critical role in the etiopathogenesis of ulcerative colitis. Defensins, including porcine ß-defensin (pBD)2, are crucial antimicrobial peptides for gut protection owing to their antibacterial and immunomodulatory activities. The purpose of this study was to investigate the protective effects of pBD2 on mucosal injury and the disruption of the epithelial barrier during the pathological process of dextran sodium sulfate (DSS)-induced colitis. The effects and mechanism of pBD2 were evaluated both using a DSS-induced C57BL/6 mouse model and, in vitro, using Caco-2 and RAW264.7 cells. DSS-induced colitis was characterized by higher disease activity index, shortened colon length, elevated activities of myeloperoxidase and eosinophil peroxidase, histologic evidence of inflammation, and increased expression levels of TNF-α, IL-6, and IL-8. pBD2 increased the expression of zonula occludens-1, zonula occludens-2, claudin-1, mucin-1, and mucin-2 mRNA and proteins, and it decreased permeability to FITC-D, as well as apoptosis, in DSS-treated mice. pBD2 also decreased inflammatory infiltrates of the colon epithelium. In Caco-2 cells, pBD2 increased transepithelial electrical resistance and mucin mRNA expression, and it decreased the permeability of FITC-D while preserving the structural integrity of the tight junctions. The effects of pBD2 appeared to be through upregulation of the expression of genes associated with tight junctions and mucins, and by suppressing DSS-induced increases in inflammation, inducible NO synthase, cyclooxygenase-2, and apoptosis. These results show that pBD2 improves DSS-induced changes in mucosal lesions and paracellular permeability, possibly by affecting the activation of NF-κB signaling. The present study demonstrates that intrarectal administration of pBD2 may be a novel preventive option for ulcerative colitis.


Asunto(s)
Colitis/inmunología , Inflamación/inmunología , Mucosa Intestinal/efectos de los fármacos , beta-Defensinas/farmacología , Animales , Apoptosis/inmunología , Western Blotting , Células CACO-2 , Colitis/metabolismo , Colitis/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Inflamación/metabolismo , Inflamación/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , FN-kappa B/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos
18.
Mol Pharm ; 12(5): 1648-61, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25807257

RESUMEN

Antimicrobial peptides are molecules of innate immunity. Cathelicidin-BF is the first cathelicidin peptide found in reptiles. However, the immunoregulatory and epithelial barrier protective properties of C-BF have not been reported. Inflammatory bowel diseases, including ulcerative colitis and Crohn's disease, can lead to colon cancer, the third most common malignant tumor. The objective is to develop the new found cathelicidin-BF as a therapeutic to patients of ulcerative colitis. The morphology of the colon epithelium was observed by H&E staining; apoptosis index and infiltration of inflammatory cells in colonic epithelium were measured by TUNEL and immunohistochemistry; the expression level of endogenous mCRAMP was analyzed by immunofluorescence; and phosphorylation of the transcription factors c-jun and NF-κB in colon were analyzed by Western blot. Our results showed that the morphology of the colon epithelium in the C-BF+DSS group was improved compared with the DSS group. Apoptosis and infiltration of inflammatory cells in colonic epithelium were also significantly attenuated in the C-BF+DSS group compared with the DSS group, and the expression level of endogenous mCRAMP in the DSS group was significantly higher than other groups. DSS-induced phosphorylation level of c-jun and NF-κB while C-BF effectively inhibited phosphorylation of NF-κB (p65). The barrier protective effect of C-BF was still excellent. In conclusion, C-BF effectively attenuated inflammation and improved disrupted barrier function. Notably, this is the first report to demonstrate that C-BF attenuates DSS-induced UC both through the regulation of intestinal immune and retention of barrier function, and the exact pathway was through NF-κB.


Asunto(s)
Antiinfecciosos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Bungarus/metabolismo , Catelicidinas/uso terapéutico , Colitis/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Colon/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Transducción de Señal
19.
Arch Virol ; 160(1): 253-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25385177

RESUMEN

Orf virus (ORFV) is a typical member of the genus Parapoxvirus. The parapoxvirus genome consists of highly variable terminal regions and relatively conserved central regions with a high G + C content. In our previous study, a novel ORFV strain, NA1/11, was isolated from northeastern China. To fully characterize this strain, we sequenced the entire genome of NA1/11 and conducted a comparative analysis using multiple parapoxviruses. The genomic sequence of NA1/11 was found to consist of 137,080 nucleotides with a G + C content of 63.6 %, but it did not contain the terminal hairpin sequence. Alignment of ORFs from NA1/11 with NZ2, IA82 and SA00 revealed several highly variable ORFs, while the most evident ones are ORFs 001, 103, 109-110, 116 and 132. An odd phenomenon in the region of ORFs 118-120 is that the non-coding fragments are almost as long as the coding fragments. By comparative analysis of inverted terminal repeats, we identified one repeat motif and a long conserved fragment. By comparing the ITRs of SA00 with those of three other ORFVs, more clues were obtained about the correlation between ITR sequence and host adaption. Comparison of the NA1/11 genome with the sequences of other strains of ORFV revealed highly variable regions, thus providing new insights into the genetic diversity of ORFV.


Asunto(s)
Ectima Contagioso/virología , Virus del Orf/genética , Parapoxvirus/genética , Animales , China/epidemiología , Ectima Contagioso/epidemiología , Regulación Viral de la Expresión Génica , Genoma Viral , Datos de Secuencia Molecular , Virus del Orf/clasificación , Parapoxvirus/clasificación , Ovinos , Secuencias Repetidas Terminales , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
Emerg Infect Dis ; 20(7): 1208-10, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24963887

RESUMEN

We investigated an acute outbreak of the cutaneous form of fowlpox among chickens in China in November 2009. Using pathologic and virologic methods, we identified a novel type of fowlpox virus that carried an integrated genomic sequence of reticuloendotheliosis virus. This highly pathogenic virus could lead to severe ecologic effects and economic losses.


Asunto(s)
Pollos/virología , Virus de la Viruela de las Aves de Corral/genética , Viruela Aviar/epidemiología , Viruela Aviar/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Animales , China/epidemiología , Brotes de Enfermedades , Aves de Corral/virología , Virus de la Reticuloendoteliosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA