RESUMEN
Anaerobic bacteria are responsible for half of all pulmonary infections. One such pathogen is Streptococcus pneumoniae (Spn), a leading cause of community-acquired pneumonia, bacteremia/sepsis, and meningitis. Using a panel of isogenic mutants deficient in lactate, acetyl-CoA, and ethanol fermentation, as well as pharmacological inhibition, we observed that NAD(H) redox balance during fermentation was vital for Spn energy generation, capsule production, and in vivo fitness. Redox balance disruption in fermentation pathway-specific fashion substantially enhanced susceptibility to killing in antimicrobial class-specific manner. Blocking of alcohol dehydrogenase activity with 4-methylpyrazole (fomepizole), an FDA-approved drug used as an antidote for toxic alcohol ingestion, enhanced susceptibility of multidrug-resistant Spn to erythromycin and reduced bacterial burden in the lungs of mice with pneumonia and prevented the development of invasive disease. Our results indicate fermentation enzymes are de novo targets for antibiotic development and a novel strategy to combat multidrug-resistant pathogens.
Asunto(s)
NAD , Streptococcus pneumoniae , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Eritromicina/farmacología , PulmónRESUMEN
Streptococcus pneumoniae colonizes the nasopharynx asymptomatically but can also cause severe life-threatening disease. Importantly, stark differences in carbohydrate availability exist between the nasopharynx and invasive disease sites, such as the bloodstream, which most likely impact S. pneumoniae's behavior. Herein, using chemically defined medium (CDM) supplemented with physiological levels of carbohydrates, we examined how anatomical site-specific carbohydrate availability impacted S. pneumoniae physiology and virulence. S. pneumoniae cells grown in CDM modeling the nasopharynx (CDM-N) had reduced metabolic activity and a lower growth rate, demonstrated mixed acid fermentation with marked H2O2 production, and were in a carbon-catabolite repression (CCR)-derepressed state versus S. pneumoniae cells grown in CDM modeling blood (CDM-B). Using transcriptome sequencing (RNA-seq), we determined the transcriptome for the S. pneumoniae wild-type (WT) strain and its isogenic CCR-deficient mutant in CDM-N and CDM-B. Genes with altered expression as a result of changes in carbohydrate availability or catabolite control protein deficiency, respectively, were primarily involved in carbohydrate metabolism, but also encoded established virulence determinants, such as polysaccharide capsule and surface adhesins. We confirmed that anatomical site-specific carbohydrate availability directly influenced established S. pneumoniae virulence traits. S. pneumoniae cells grown in CDM-B formed shorter chains, produced more capsule, were less adhesive, and were more resistant to macrophage killing in an opsonophagocytosis assay. Moreover, growth of S. pneumoniae in CDM-N or CDM-B prior to the challenge of mice impacted relative fitness in a colonization model and invasive disease model, respectively. Thus, anatomical site-specific carbohydrate availability alters S. pneumoniae physiology and virulence, in turn promoting anatomical site-specific fitness.
Asunto(s)
Adaptación Fisiológica , Metabolismo de los Hidratos de Carbono , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/fisiología , Animales , Adhesión Bacteriana , Femenino , Masculino , Ratones , Especificidad de Órganos , Virulencia , Factores de VirulenciaRESUMEN
The present study aimed to investigate the expression of the forkhead box protein M1 (FOXM1) in the placenta of patients with preeclampsia, and its effect on trophoblasts. A total of 28 patients with preeclampsia and 30 patients without preeclampsia (controls) who underwent cesarean section and were admitted to the Affiliated Hospital of Qingdao University between June 2013 and September 2016 were enrolled in the present study. The expression of FOXM1 in placental tissues was examined by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. HTR8/SVneo cells were used to measure the in vitro expression of the vascular endothelial growth factor (VEGF). The results demonstrated that FOXM1 expression was downregulated in the placental tissues of patient with preeclampsia (P<0.05). Following the silencing of FOXM1 expression, the proliferation of HTR8/SVneo cells was suppressed. The results of flow cytometry demonstrated that proportion of HTR8/SVneo cells in the G0/G1 phase and the proportion of apoptotic cells increased. The expression of the apoptosis regulator BCL-2, as well as the expression of VEGF mRNA and protein expression were also downregulated following FOXM1 silencing. FOXM1 may therefore promote the development of preeclampsia via the VEGF signaling pathway.