Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Small ; 19(15): e2205324, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36634985

RESUMEN

With commercial electronics transitioning toward flexible devices, there is a growing demand for high-performance polymers such as poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS). Previous breakthroughs in promoting the conductivity of PEDOT:PSS, which mainly stem from solvent-treatment and transfer-printing strategies, remain as inevitable challenges due to the inefficient, unstable, and biologically incompatible process. Herein, a scalable fabrication of conducting PEDOT:PSS inks is reported via a metastable liquid-liquid contact (MLLC) method, realizing phase separation and removal of excess PSS simultaneously. MLLC-doped inks are further used to prepare ring-like films through a compromise between the coffee-ring effect and the Marangoni vortex during evaporation of droplets. The specific control over deposition conditions allows for tunable ring-like morphologies and preferentially interconnected networks of PEDOT:PSS nanofibrils, resulting in a high electrical conductivity of 6,616 S cm-1 and excellent optical transparency of the film. The combination of excellent electrical properties and the special morphology enables it to serve as electrodes for touch sensors with gradient pressure sensitivity. These findings not only provide new insight into developing a simple and efficient doping method for commercial PEDOT:PSS ink, but also offer a promising self-assembled deposition pattern of organic semiconductor films, expanding the applications in flexible electronics, bioelectronics as well as photovoltaic devices.

2.
Soft Matter ; 14(28): 5888-5897, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29963675

RESUMEN

Hydrogel films have promising applications in medical dressings, flexible electronics, etc. However, it is challenging to fabricate ultrathin hydrogel films with high toughness and controllable thickness. Here, we report a facile approach to prepare tough physical hydrogel films by spin-coating of a poly(acrylic acid-co-acrylamide) (P(AAc-co-AAm)) solution and subsequent gelation in FeCl3 solution to form carboxyl-Fe3+ coordination complexes. The thickness of the obtained gel films, ranging from several to hundreds of micrometers, was easily tunable by adjusting the spin conditions and polymer concentration. The thus obtained hydrogel films showed excellent mechanical properties, with tensile breaking strengths of 0.6-14.5 MPa, breaking strains of 140-840%, Young's moduli of 0.1-61.7 MPa, and tearing fracture energies of 300-1300 J m-2. Based on this approach, responsive tough hydrogel films can also be prepared by spin-coating of a poly(acrylic acid-co-N-isopropylacrylamide) (P(AAc-co-NIPAm)) solution. The obtained gel films showed a fast response (<60 s) and a large output force (∼0.2 MPa) triggered by a concentrated saline solution, making them an ideal material in the design of chemomechanical devices. Furthermore, a bilayer hydrogel film was fabricated by two-step spin-coating of P(AAc-co-NIPAm) and P(AAc-co-AAm) solutions, which showed reversible bending deformation under external stimuli. This simple yet effective approach should be applicable to other systems to prepare versatile hydrogel films with tunable thickness and promising applications in diverse areas.

3.
Langmuir ; 31(50): 13478-87, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26618390

RESUMEN

Immobilized polymer fractions have been claimed to be of vital importance for sol-gel transitions generally observed in nanoparticle dispersions but remain a matter of debate regarding mechanism and difficulty for prediction. Here we investigate the immobilized layer structures of trifunctionality polyether polyol (PPG) near the surfaces of hydrophilic and hydrophobic fumed silica (FS) nanoparticles to reveal the role of surface chemistry on the molecular dynamics and sol-gel transitions of the dispersions. Using modulated differential scanning calorimetry, we measure the specific heat capacity during glass transition and the enthalpy during cold-crystallization. Comparing with hydrophobic FS that forms a fully immobilized (glassy) layer, we find that hydrophilic FS immobilizes more PPG, forming a partially immobilized outer layer being unable to crystallize next to the inner glassy layer. By correlating the thickness of the glassy layer with half of the minimum spacing between nanoparticles, we directly evidence the percolation of this layer along the nearest neighbor nanoparticles responsible for the sol-gel transition. Using effective volume fraction including the glassy layer, we successfully construct master curves of relative viscosity of both hydrophilic and hydrophobic FS dispersions, pointing to a common sol-gel transition mechanism mediated by the surface chemistry.

4.
Langmuir ; 31(16): 4733-40, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25843576

RESUMEN

Mucus lubricants are widely distributed in living organisms. Such lubricants consist of a gel structure constructed by associative mucin. However, limited tribological studies exist on associative mucin fluids. The present research is the first to investigate the frictional behavior of a typical intact vertebrate mucin (loach skin mucin), which can recover the gel structure of mucus via hydrophobic association under physiological conditions (5-10 mg/mL loach skin mucin dissolved in water). Both rough hydrophobic and hydrophilic polydimethylsiloxane (PDMS) rubber plates were used as friction substrates. Up to 10 mg/mL loach skin mucin dissolved in water led to a 10-fold reduction in boundary friction of the two substrates. The boundary-lubricating ability for hydrophilic PDMS decreased with rubbing time, whereas that for hydrophobic PDMS remained constant. The boundary-lubricating abilities of the mucin on hydrophobic PDMS and hydrophilic PDMS showed almost similar responses toward changing concentration or sodium dodecyl sulfate (SDS). The mucin fluids reduced boundary friction coefficients (µ) only at concentrations (c) in which intermucin associations were formed, with a relationship shown as µ ∼ c(-0.7). Destroying intermucin associations by SDS largely impaired the boundary-lubricating ability. Results reveal for the first time that intermolecular association of intact mucin in bulk solution largely enhances boundary lubrication, whereas tightly adsorbed layer plays a minor role in the lubrication. This study indicates that associated mucin should contribute considerably to the lubricating ability of biological mucus in vivo.


Asunto(s)
Lubricantes/química , Mucinas/química , Adsorción , Animales , Cipriniformes , Interacciones Hidrofóbicas e Hidrofílicas , Reología , Piel/química , Propiedades de Superficie
5.
Phys Chem Chem Phys ; 17(30): 19815-9, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26156247

RESUMEN

Novel nanoparticle ionic liquids (NILs) are prepared by grafting modified nanoparticles with long-chain ionic liquids (ILs). The NIL behaves like a liquid at ambient temperature. We studied the rheological behavior of the IL and NIL over the range of 10-55 °C and found an extraordinary difference between the IL and NIL: a small content of nanosilica (7%) moderately improves the crystallinity by 7% of the poly(ethylene glycol) (PEG) segment in the IL, and it improves the dynamic moduli significantly (by 5 times at room temperature). It retards the decay temperature (by 10 °C) of the dynamic moduli during heating as well. The thermal rheological hysteresis observed during heating-cooling temperature sweeps is ascribed to the melting-recrystallization of the PEG segments. Meanwhile, the IL and NIL express accelerated crystallization behavior in comparison with the oligomeric anion. For the first time, we find that ILs and NILs are able to form nanoparticle-containing spherulites at room temperature after long time aging.

6.
Soft Matter ; 10(15): 2685-92, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24647801

RESUMEN

We report a facile kinetic strategy in combination with styrene-butadiene-styrene (SBS) copolymer compatibilizers for preparing carbon black (CB) filled immiscible polypropylene (PP)/polystyrene (PS) (1/1) blends with finely tuned morphologies and show the important role of location and migration of CB nanoparticles in determining the electrical conductivity and rheological behaviour of the composites. A novel method of mixing a SBS/CB (5/3) masterbatch with the polymers allowed producing composites with CB aggregates dispersed partially in the unfavorable PP phase and partially in the PP side of the interface to exhibit diverse phase connectivity and electrical conductivity depending on the compounding sequences. A cocontinuous morphology with CB enrichment along the interface was formed in the composite prepared by mixing the SBS/CB masterbatch with the premixed PP/PS blend, giving rise to a highest electrical conductivity and dynamic moduli at low frequencies. On the other hand, mixing the masterbatch with one and then with another polymer yielded droplet (PS)-in-matrix (filled PP) composites. The composites underwent phase coalescence and CB redistribution accompanied by marked dynamic electrical conduction and modulus percolations as a function of time during thermal annealing at 180 °C. The composites with the initial droplet-in-matrix morphology progressed anomalously into the cocontinuous morphology, reflecting a common mechanism being fairly nonspecific for understanding the processing of filled multicomponent composites with tailored performances of general concern.

7.
ACS Appl Mater Interfaces ; 16(5): 6433-6446, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38289030

RESUMEN

Marine biofouling, resulting from the adhesion of marine organisms to ship surfaces, has long been a significant issue in the maritime industry. In this paper, we focused on utilizing soft and hydrophilic hydrogels as a potential approach for antifouling (AF) coatings. Acrylic acid (AA) with a polyelectrolyte effect and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) with an antipolyelectrolyte effect were selected as monomers. By adjusting the monomer ratio, we were able to create hydrogel coatings that exhibited low swelling ratio in both fresh water and seawater. The Al(OH)3 nanoparticle, as a physical cross-linker, provided better mechanical properties (higher tensile strength and larger elongation at break) than the chemical cross-linker through the dynamic coordination bonds and plentiful hydrogen bonds. Additionally, we incorporated trehalose into the hydrogel, enabling the repair of the hydrogel network through covalent-like hydrogen bonding. The zwitterion compound SBMA endowed the hydrogel with excellent AF performance. It was found that the highest SBMA content did not lead to the best antibacterial performance, as bacterial adhesion quantity was also influenced by the charge of the hydrogel. The hydrogel with appropriate SBMA content being close to electrical neutrality exhibits the strongest zwitterionic property of PSBMA chains, resulting in the best antibacterial adhesion performance. Furthermore, the pronounced hydrophilicity of SBMA enhanced the lubrication of the hydrogel surface, thereby reducing the friction resistance when applied to the hull surface during ship navigation.

8.
ACS Appl Mater Interfaces ; 15(6): 8521-8529, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746749

RESUMEN

Electromagnetic interference (EMI) shielding materials with stretchability are important for developing wearable and flexible appliances. Herein, lithium bis(trifloromethanesulfonyl)imide (Li-TFSI)-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and carboxylated styrene-butadiene rubber (XSB) latex are used to prepare stretchable EMI shielding composite films of 0.2 mm in thickness. In these films, the doped PEDOT:PSS nanoparticles form tenuous conductive pathways between the hexagonally packed latex particles, resulting in higher EMI shielding efficiency (EMI SE) compared with the films containing traditional dopant ethylene glycol. For the purpose of stretchable EMI shielding, the films containing 6 wt % PEDOT:PSS and 6 wt % Li-TFSI demonstrate EMI SE of 50 and 30 dB (12.4 GHz) at 0 and 100% strains, respectively, being the highest values among the reported shielding composites except for those using liquid metal as the filler. The investigation also provides a simple and environmentally friendly preparation method being highlighted for the development of lightweight stretchable EMI shielding materials for applications in flexible electronics in the near future.

9.
Polymers (Basel) ; 15(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37514390

RESUMEN

Cellulose was extracted from coconut shell powder (CSP) as a renewable biomass resource and utilized as a reinforcing material in poly(lactic acid)/poly(butylene succinate) (PLA/PBS) solvent casting films. The extraction process involved delignification and mercerization of CSP. Microscopic investigation of the extracted microfibers demonstrated a reduction in diameter and a rougher surface characteristic compared to the raw CSP. The cellulose prepared in this study exhibited improved thermal stability and higher crystallinity (54.3%) compared to CSP. The morphology of the cycrofractured surface, thermal analysis, mechanical property, and UV transmittance of films were measured and compared. Agglomeration of 3 wt.% of cellulose was observed in PLA/PBS films. The presence of cellulose higher than 1 wt.% in the PLA/PBS decreased the onset decomposition temperature and maximum decomposition temperature of films. However, the films loading 3 wt.% of cellulose had a higher char formation (5.47%) compared to neat PLA/PBS films. The presence of cellulose promoted the formation of non-uniform crystals, while cellulose had a slightly negative impact on crystallinity due to the disruption of polymer chains at lower cellulose content (0.3, 0.5 wt.%). The mechanical strength of PLA/PBS films decreased as the cellulose content increased. Moreover, PLA/PBS film with 3 wt.% of cellulose appeared to show a 3% and 7.5% decrease in transmittance in UVC (275 nm) and UVA (335 nm) regions compared to neat PLA/PBS films while maintaining a certain transparency.

10.
Front Plant Sci ; 14: 1342970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288409

RESUMEN

The composition of Pseudostellaria heterophylla (Tai-Zi-Shen, TZS) is greatly influenced by the growing area of the plants, making it significant to distinguish the origins of TZS. However, traditional methods for TZS origin identification are time-consuming, laborious, and destructive. To address this, two or three TZS accessions were selected from four different regions of China, with each of these resources including distinct quality grades of TZS samples. The visible near-infrared (Vis/NIR) and short-wave infrared (SWIR) hyperspectral information from these samples were then collected. Fast and high-precision methods to identify the origins of TZS were developed by combining various preprocessing algorithms, feature band extraction algorithms (CARS and SPA), traditional two-stage machine learning classifiers (PLS-DA, SVM, and RF), and an end-to-end deep learning classifier (DCNN). Specifically, SWIR hyperspectral information outperformed Vis/NIR hyperspectral information in detecting geographic origins of TZS. The SPA algorithm proved particularly effective in extracting SWIR information that was highly correlated with the origins of TZS. The corresponding FD-SPA-SVM model reduced the number of bands by 77.2% and improved the model accuracy from 97.6% to 98.1% compared to the full-band FD-SVM model. Overall, two sets of fast and high-precision models, SWIR-FD-SPA-SVM and SWIR-FD-DCNN, were established, achieving accuracies of 98.1% and 98.7% respectively. This work provides a potentially efficient alternative for rapidly detecting the origins of TZS during actual production.

11.
Sci Total Environ ; 835: 155521, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489517

RESUMEN

Carbon black (CB) and silica (Sil) as rubber reinforcement have raised environmental concerns for being high resources consumptive and less susceptible towards biodegradability. Cellulose nanocrystal (CNC) has demonstrated great potentials for use as biodegradable nanofillers in rubber nanocomposites while evaluation of its environmental impacts with optimal end-of-life (EOL) choices is not carried out. To simulate realistic EOL, thermo-oxidative aging and soil burial aging behaviors of rubber nanocomposites with 33.3% filler were performed. The environmental weathering performance modeled with the help of life cycle assessment (LCA) illustrates increased biodegradation susceptibility with partial replacement of CB or Sil with CNC in the nanocomposites, hence promoting the environmental solutions for waste minimalization by enhancing the biodegradability potentials. In terms of LCA, the CNC incorporation contributes more to the environmental impacts in manufacturing but greatly lowers the EOL choices, by reducing the global warming potential values.


Asunto(s)
Nanocompuestos , Nanopartículas , Animales , Celulosa/química , Estadios del Ciclo de Vida , Nanocompuestos/química , Nanopartículas/química , Goma , Dióxido de Silicio , Suelo , Hollín
12.
Gels ; 8(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36005119

RESUMEN

The rheological behavior of polyvinyl alcohol (PVA) aqueous solution is crucial to optimizing the processing technology and performance of PVA products. In this paper, the dynamic rheological behavior of PVA aqueous solution was investigated in detail. PVA solution with a concentration of 10 wt% showed unnormal rheological behaviors, that is, the liquid-like behavior in the high frequency (ω) region and the solid-like behavior in the low ω region. A storage modulus (G') plateau appears in the relatively low ω region as a gel with a network structure. Different from conventional hydrogel, this plateau has a low modulus, and the corresponding size of the relaxation unit is estimated to be 554 nm, being higher than the size of a whole PVA chain. It is believed that the network mesh is formed by the intermolecular hydrogen bonding interactions among PVA chains. The relaxation time of these meshes is longer than the reptation time of a PVA chain. Based on the relaxation spectrum and calculation analysis, it is found that the destruction of intermolecular hydrogen bonds, such as by heating up, adding sodium dodecyl sulfate, and shear operation, will make the relaxation unit (mesh) larger and lead to the left shift of the intersection of G' and loss modulus (G″). In a PVA solution with a high concentration, multiple meshes of various sizes could be formed and thus generate multiple relaxation peaks. The large-sized meshes mainly contribute to the left shift of the intersection of G' and G″, and the small-sized meshes contribute to the high plateau modulus. The results in this paper offer a new angle to analyze polymer solutions with strong intermolecular interaction.

13.
Gels ; 8(7)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35877510

RESUMEN

The evolution of the morphology/structure and the nonlinear viscoelasticity of rubber blends under large amounts of strain are key scientific issues for the design and manufacture of rubber blends. The rheological responses of natural rubber/styrene-butadiene rubber (NR/SBR) blends are traced over a wide range of blend compositions to gain an insight into the effect of blend morphology on their nonlinear viscoelasticity. We also prepare NR + SBR physical blends without melt mixing to distinguish the contributions of composition and blend morphology to the viscoelastic response. The microscopic heterogeneous gel-like structure of NR/SBR blends may remarkably weaken their strain softening and improve their modulus hysteretic recovery under large strain, which may be attributed to the heterogeneous microscopic deformation for the NR and SBR phases. Furthermore, additional elastic contribution resulted from the increasing interfacial energy of domain deformation. This may provide some new insights into the effect of blend morphology on the Payne effect of rubber blends.

14.
J Food Sci Technol ; 48(4): 489-93, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23572776

RESUMEN

Hydrated starch-gluten reconstituted doughs were prepared and dynamic rheological tests of the reconstituted doughs were performed using dynamic strain and dynamic frequency sweep modes. Influence of starch/gluten ratio on rheological behaviors of the reconstituted doughs was investigated. The results showed that the reconstituted doughs exhibited nonlinear rheological behavior with increasing strain. The mechanical spectra revealed predominantly elastic characteristics in frequency range from 10(-1) rad s(-1) to 10(2) rad s(-1). Cole-Cole functions were applied to fit the mechanical spectra to reveal the influence of starch/gluten ratio on Plateau modulus and longest relaxation time of the dough network. The time-temperature superposition principle was applicable to a narrow temperature range of 25°C ~40°C while it failed at 50°C due to swelling and gelatinization of the starch.

15.
J Colloid Interface Sci ; 591: 409-417, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33631528

RESUMEN

Cellulosic nanofillers are sustainable replacements of synthetic fillers while the agglomeration limits their potentials in high-performance rubber bionanocomposites. Herein, we investigate the effects of ionic liquid (IL) on cellulose nanocrystal and cellulose nanofibril filled natural rubber (NR) compounds and vulcanizates. The results indicate that IL improves the dispersion of cellulosic nanofillers, crosslinking density of NR matrix and mechanical strength of the vulcanizates. Invesigations of viscoelastic rheological behaviors show amplitude of Payne effect faints in compounds and raises relatively in vulcanizates with the increment of cellulosic nanofillers and IL.

16.
J Colloid Interface Sci ; 588: 602-610, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33162040

RESUMEN

Nanoparticles reinforce rubbers and enhance Payne effect for the compounds experiencing large amplitude oscillatory shear deformation. Herein the effects of silica and cellulose nanocrystals on the Payne effect of natural rubber compounds are investigated by stress decomposition methods for clarifying the elastic and viscous nonlinearities varying with filler content and composition. The Payne effect is in general characterized by intercycle strain softening and shear thinning behaviors and intracycle hardening and thinning behaviors at high strain (strain rate) amplitudes while the filler influences the behaviors markedly at intermediate strain (rate) amplitudes. Especially, the addition of cellulose nanocrystals in the silica filled compounds improves the elastic nonlinearity and greatly weakens the viscous nonlinearity, providing a perspective on understanding the Payne effect for manufacturing high-performance rubber materials.

17.
ACS Appl Mater Interfaces ; 13(32): 38346-38357, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34374275

RESUMEN

Layered double hydroxides (LDHs) have attracted much attention in supercapacitors because of the high specific surface area and theoretical capacitance. However, the bad cycling stability has always been their Achilles' heel that restrains their further application. In this paper, a small amount of unactive and single-valence element zinc, which has no contribution to the capacitance of electrodes, was first doped into NiCo-LDHs through two consecutive electrodeposition processes only within 30 min. With a polyaniline (PANI) nanolayer as the interlayer, an ultrathin NiCoZn-LDH nanoplate network was well-anchored on the carbon cloth surface. The slight Zn2+ doping dramatically enhanced the cycling performance of LDHs with little capacitance decay. Zn2+ doping enhanced the cyclic structural stability of NiCoZn-LDHs, while the PANI layer strengthened the interface interaction between LDHs and the current collector. By controlling the doping content of Zn2+ at 2.9%, the composite electrode achieved the best performance with a high specific capacitance of 1749 F g-1 and an ultralong life span with 89% capacitance retention after 40,000 charge-discharge cycles. This work offers a novel strategy to fast build LDH-based supercapacitors with both high specific capacitance and cycling performance.

18.
ACS Appl Mater Interfaces ; 13(35): 42240-42249, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34436862

RESUMEN

Although hydrogels exhibit excellent low frictional behavior, their friction coefficients cannot meet the requirements for biology, especially at low sliding velocities. Inspired by the natural lubrication mechanism from animals, plants, or even microorganisms, a nonionic surfactant, Tween 80, was introduced into a biofriendly poly(vinyl alcohol) (PVA) hydrogel to construct a composite hydrogel with ultralubrication. Such a combination endows PVA hydrogels with an ultralow coefficient of friction (10-3 to 10-4) under an extremely low sliding velocity (0.01 mm/s). Tween 80 micelles and aggregates, together with hydrophobic molds, induce rough surfaces and high carbon contents on the surface of the hydrogel, promoting excellent lubrication behavior of the composite hydrogel. In addition to the desirable lubrication, this environmentally friendly composite hydrogel also exhibited excellent flexibility at subzero temperatures, tensile properties, and good recyclability. Additionally, the method of introducing Tween 80 into hydrogels to reduce friction is also effective in chemically crosslinked double-network hydrogels.


Asunto(s)
Hidrogeles/química , Lubricantes/química , Polisorbatos/química , Alcohol Polivinílico/química , Tensoactivos/química , Ensayo de Materiales , Docilidad , Resistencia a la Tracción , Humectabilidad
19.
Biomacromolecules ; 11(1): 126-32, 2010 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-19908856

RESUMEN

Some effects of water at levels up to 25% (dry solids basis db) on regenerated cellulose films with a thickness of 100 mum were investigated by dynamic vapor sorption (DVS), X-ray diffraction, tensile testing, and proton-nuclear magnetic resonance (NMR). The sorption isotherm fitted by the D'Arcy and Watt model and the increase in NMR T(2) with water content suggest that a mobile water fraction appears at water contents above 10%db. Water absorption increased the crystallinity of cellulose films from 31% (dry) to 38% (25%db) and altered the dimensions of crystallites. Mechanical measurements on planar and notched samples at all the water contents used here showed ductile fracture behavior. Although the properties of water in these cellulose films are comparable to previously reported data on starch, cellulose films at low water content are much less brittle than starch. The reasons for this difference are explored.


Asunto(s)
Celulosa/química , Mecánica , Almidón/química , Propiedades de Superficie , Resistencia a la Tracción , Difracción de Rayos X
20.
Polymers (Basel) ; 12(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238571

RESUMEN

In this paper we designed greener rubber nanocomposites exhibiting high crosslinking density, and excellent mechanical and thermal properties, with a potential application in technical fields including high-strength and heat-resistance products. Herein 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) ionic liquid was combined with silane coupling agent to formulate the nanocomposites. The impact of [EMIM]OAc on silica dispersion in a nitrile rubber (NBR) matrix was investigated by a transmission electron microscope and scanning electron microscopy. The combined use of the ionic liquid and silane in an NBR/silica system facilitates the homogeneous dispersion of the silica volume fraction (φ) from 0.041 to 0.177 and enhances crosslinking density of the matrix up to three-fold in comparison with neat NBR, and also it is beneficial for solving the risks of alcohol emission and ignition during the rubber manufacturing. The introduction of ionic liquid greatly improves the mechanical strength (9.7 MPa) with respect to neat NBR vulcanizate, especially at high temperatures e.g., 100 °C. Furthermore, it impacts on rheological behaviors of the nanocomposites and tends to reduce energy dissipation for the vulcanizates under large amplitude dynamic shear deformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA