Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Cell Mol Med ; 28(14): e18375, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039796

RESUMEN

Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.


Asunto(s)
Citocinas , Proteínas del Citoesqueleto , Dermatitis Atópica , Ratones Endogámicos BALB C , Dinámicas Mitocondriales , Triterpenos Pentacíclicos , Triterpenos , Animales , Dinámicas Mitocondriales/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Dermatitis Atópica/metabolismo , Humanos , Triterpenos/farmacología , Ratones , Citocinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Linfopoyetina del Estroma Tímico , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células HaCaT , Fosforilación/efectos de los fármacos
2.
FASEB J ; 37(4): e22852, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36906289

RESUMEN

Polydatin (PD), a natural product derived from Polygonum cuspidatum, has anti-inflammatory and antioxidant effects and has significant benefits in treating allergic diseases. However, its role and mechanism in allergic rhinitis (AR) have not been fully elucidated. Herein, we investigated the effect and mechanism of PD in AR. AR model was established in mice with OVA. Human nasal epithelial cells (HNEpCs) were stimulated with IL-13. HNEpCs were also treated with an inhibitor of mitochondrial division or transfected with siRNA. The levels of IgE and cellular inflammatory factors were examined by enzyme linked immunosorbent assay and flow cytometry. The expressions of PINK1, Parkin, P62, LC3B, NLRP3 inflammasome proteins, and apoptosis proteins in nasal tissues and HNEpCs were measured by Western blot. We found that PD suppressed OVA-induced epithelial thickening and eosinophil accumulation in the nasal mucosa, reduced IL-4 production in NALF, and regulated Th1/Th2 balance. In addition, mitophagy was induced in AR mice after OVA challenge and in HNEpCs after IL-13 stimulation. Meanwhile, PD enhanced PINK1-Parkin-mediated mitophagy but decreased mitochondrial reactive oxygen species (mtROS) production, NLRP3 inflammasome activation, and apoptosis. However, PD-induced mitophagy was abrogated after PINK1 knockdown or Mdivi-1 treatment, indicating a key role of the PINK1-Parkin in PD-induced mitophagy. Moreover, mitochondrial damage, mtROS production, NLRP3 inflammasome activation, and HNEpCs apoptosis under IL-13 exposure were more severe after PINK1 knockdown or Mdivi-1 treatment. Conclusively, PD may exert protective effects on AR by promoting PINK1-Parkin-mediated mitophagy, which further suppresses apoptosis and tissue damage in AR through decreasing mtROS production and NLRP3 inflammasome activation.


Asunto(s)
Mitofagia , Rinitis Alérgica , Ratones , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-13 , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo
3.
BMC Pulm Med ; 23(1): 50, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36726128

RESUMEN

BACKGROUND: Asthma is characterized by chronic inflammation and airway remodeling. However, limited study is conducted on the gene expression profiles of ovalbumin (OVA) induced asthma in mice. Here, we explored the gene expression profiles in lung tissues from mice with OVA-induced asthma using microarray and bioinformatics analysis. METHODS: For establishment of OVA-induced asthma model, mice first received intraperitoneal sensitization with OVA on day 0, 7 and 14, followed by atomizing inhalation of OVA 3 times a week for 8 weeks. The lung tissues were collected and subjected to microarray analysis, bioinformatics analysis and expression validation. RESULTS: Microarray data of lung tissues suggested that 3754 lncRNAs and 2976 mRNAs were differentially expressed in lung tissues between control and asthmatic mice, including 1647 up-regulated and 2106 down-regulated lncRNAs, and 1201 up-regulated and 1766 down-regulated mRNAs. GO analysis displayed that the up-regulated genes were enriched in inflammatory response, leukocyte migration involved in inflammatory response, and Notch signaling pathway. KEGG pathway analysis indicated that the enriched pathway terms of the up-regulated gene included Toll-like receptor signaling pathway and Th17 cell differentiation signaling pathway. Additionally, based on the previously published literatures on asthma and inflammation, we screened out down-regulated genes, such as Smg7, Sumo2, and Stat5a, and up-regulated genes, such as Myl9, Fos and Tlr4. According to the mRNA-lncRNA co-expression network, we selected lncRNAs associated with above genes, including the down-regulated lncRNAs of NONMMUT032848, NONMMUT008873, NONMMUT009478, and NONMMUT006807, and the up-regulated lncRNAs of NONMMUT052633, NONMMUT05340 and NONMMUT042325. The expression changes of the above genes were validated in lung tissues by real-time quantitaive PCR and Western blot. CONCLUSIONS: Overall, we performed gene microarray on lung samples from OVA-induced asthmatic mice and summarized core mRNAs and their related lncRNAs. This study may provide evidence for further research on the therapeutic targets of asthma.


Asunto(s)
Asma , ARN Largo no Codificante , Ratones , Animales , Ovalbúmina/efectos adversos , Transcriptoma , ARN Largo no Codificante/metabolismo , Asma/inducido químicamente , Asma/genética , Asma/tratamiento farmacológico , Pulmón/metabolismo , Inflamación , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
4.
J Cell Mol Med ; 24(23): 13739-13750, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124760

RESUMEN

This study is to investigate the inhibitory effects and mechanisms of DEK-targeting aptamer (DTA-64) on epithelial mesenchymaltransition (EMT)-mediated airway remodelling in mice and human bronchial epithelial cell line BEAS-2B. In the ovalbumin (OVA)-induced asthmatic mice, DTA-64 significantly reduced the infiltration of eosinophils and neutrophils in lung tissue, attenuated the airway resistance and the proliferation of goblet cells. In addition, DTA-64 reduced collagen deposition, transforming growth factor 1 (TGF-ß1) level in BALF and IgE levels in serum, balanced Th1/Th2/Th17 ratio, and decreased mesenchymal proteins (vimentin and α-SMA), as well as weekend matrix metalloproteinases (MMP-2 and MMP-9) and NF-κB p65 activity. In the in vitro experiments, we used TGF-ß1 to induce EMT in the human epithelial cell line BEAS-2B. DEK overexpression (ovDEK) or silencing (shDEK) up-regulated or down-regulated TGF-ß1 expression, respectively, on the contrary, TGF-ß1 exposure had no effect on DEK expression. Furthermore, ovDEK and TGF-ß1 synergistically promoted EMT, whereas shDEK significantly reduced mesenchymal markers and increased epithelial markers, thus inhibiting EMT. Additionally, shDEK inhibited key proteins in TGF-ß1-mediated signalling pathways, including Smad2/3, Smad4, p38 MAPK, ERK1/2, JNK and PI3K/AKT/mTOR. In conclusion, the effects of DTA-64 against EMT of asthmatic mice and BEAS-2B might partially be achieved through suppressing TGF-ß1/Smad, MAPK and PI3K signalling pathways. DTA-64 may be a new therapeutic option for the management of airway remodelling in asthma patients.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Asma/etiología , Asma/metabolismo , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteínas Oncogénicas/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Animales , Asma/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades , Transición Epitelial-Mesenquimal/genética , Femenino , Silenciador del Gen , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Inmunomodulación/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Ovalbúmina/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Smad/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
5.
Appl Microbiol Biotechnol ; 103(16): 6543-6557, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31236615

RESUMEN

Lymphocyte activation gene-3 (LAG3) is a transmembrane protein expressed on activated T cells and delivers inhibitory signals to render the T cells unable to effectively help B cells to produce antibodies to microbes and vaccines. Presumably, antagonizing LAG3 could enhance the antibody responses to vaccines, and LAG3 antagonists could facilitate vaccines to induce vigorous antibody responses. In this study, we designed a LAG3-interfering antisense oligonucleotide, designated as LIO-1. The LIO-1 is complementary to an identical region shared in human and mouse LAG3 mRNA. We demonstrated that LIO-1 induced the degradation of LAG3 mRNA in immune cells, decreased the LAG3 expression on CD4+ T cells, maintained the prolonged proliferation and promoted the activation of antigen-specific CD4+ T cells, and increased the production of IFN-γ, IL-2, and IL-6 in the antigen re-stimulated immune cells. In addition, we found that LIO-1 enhanced the antibody responses induced by ISA35-formulated recombinant antigen vaccine or ISA35-formulated inactivated influenza virus vaccines in mice. Thus, the LIO-1, a nucleic acid LAG3 antagonist, could facilitate vaccines to induce vigorous antibody responses and has the possibility to be used as a novel adjuvant.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Antígenos CD/biosíntesis , Vacunas contra la Influenza/inmunología , Oligodesoxirribonucleótidos Antisentido/administración & dosificación , Proteínas Recombinantes/inmunología , Animales , Regulación hacia Abajo , Vacunas contra la Influenza/administración & dosificación , Ratones , Proteínas Recombinantes/administración & dosificación , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Proteína del Gen 3 de Activación de Linfocitos
6.
Int Immunopharmacol ; 130: 111703, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38422767

RESUMEN

Bronchial asthma is known for airway inflammation, hyperresponsiveness, and remodeling.MicroRNAs (MiRNAs) have been involved in the development of asthma, whereas, the mechanism of various MiRNAs in asthma remains to be elucidated. In this study, we aim to explore the mechanism of miR-128-3p in asthma-related airway inflammation by targeting sine oculis homeobox homolog 1 (SIX1) to regulate the mitochondrial function. In an ovalbumin (OVA) asthma mouse model, miR-128-3p levels were found to be significantly diminished. Administration of miR-128-3p agomir decreased peribronchial inflammatory cell infiltration and improved airway inflammation. Afterwards, we used the luciferase reporter assay to predict and confirmed that SIX1 is a target gene of miR-128-3p. Overexpression of miR-128-3p attenuated IL-13-induced cellular inflammation and ROS production in bronchial epithelial cells (BEAS-2B). In vitro, overexpression of miR-128-3p and SIX1 knockdown mitigated mitochondrial fragmentation, reduced Drp1-mediated mitochondrial division, and upregulated mitochondrial membrane potential. Moreover, led to decreased production of ROS/mitochondrial ROS, P-Drp1(616) and Fis1 expression, while enhancing P-Drp1(637), MFN1, caspase-3/9, and Bax-mediated apoptosis. Our findings demonstrated that miR-128-3p could alleviate airway inflammation by downregulating SIX1 and improving mitochondrial function, positioning the miR-128-3p/SIX1/Drp1 signaling as a potential therapeutic target for asthma.


Asunto(s)
Asma , Proteínas de Homeodominio , MicroARNs , Animales , Ratones , Asma/genética , Asma/terapia , Asma/metabolismo , Inflamación/genética , MicroARNs/genética , MicroARNs/metabolismo , Dinámicas Mitocondriales/genética , Especies Reactivas de Oxígeno , Proteínas de Homeodominio/metabolismo
7.
Redox Biol ; 71: 103090, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373380

RESUMEN

During asthma, there is an intensification of pulmonary epithelial inflammation, mitochondrial oxidative stress, and Golgi apparatus fragmentation. However, the underlying mechanism remains largely unknown. Therefore, this study investigated the roles of ULK1, Atg9a, and Rab9 in epithelial inflammation, mitochondrial oxidative stress, and Golgi apparatus fragmentation. We found that ULK1 gene knockout reduced the infiltration of inflammatory cells, restored the imbalance of the Th1/Th2 ratio, and inhibited the formation of inflammatory bodies in the lung tissue of house dust mite-induced asthma mice. Moreover, we demonstrated that Atg9a interacted with ULK1 at S467. ULK1 phosphorylated Atg9a at S14. Treatment with ULK1 activator (LYN-1604) and ULK1 inhibitor (ULK-101) respectively promoted and inhibited inflammasome activation, indicating that the activation of inflammasome induced by house dust mite in asthma mice is dependent on ULK1. For validation of the in vivo results, we then used a lentivirus containing ULK1 wild type and ULK1-S467A genes to infect Beas-2b-ULK1-knockout cells and establish a stable cell line. The results suggest that the ULK1 S467 site is crucial for IL-4-induced inflammation and oxidative stress. Experimental verification confirmed that Atg9a was the superior signaling pathway of Rab9. Interestingly, we found for the first time that Rab9 played a very important role in inflammation-induced fragmentation of the Golgi apparatus. Inhibiting the activation of the ULK1/Atg9a/Rab9 signaling pathways can inhibit Golgi apparatus fragmentation and mitochondrial oxidative stress in asthma while reducing the production of NLRP3-mediated pulmonary epithelial inflammation.


Asunto(s)
Asma , Neumonía , Animales , Ratones , Asma/genética , Asma/metabolismo , Autofagia , Aparato de Golgi/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Neumonía/metabolismo
8.
Ageing Res Rev ; 94: 102183, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218465

RESUMEN

Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Fototerapia , Piel , Enfermedad de Parkinson/patología , Enfermedad de Alzheimer/patología
9.
J Control Release ; 366: 783-797, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242211

RESUMEN

Alzheimer's disease (AD), which is a prevailing type of dementia, presents a significant global health concern. The current therapies do not meet clinical expectations. Amyloid-beta (Aß) has been found to induce endogenous formaldehyde (FA) accumulation by inactivating FA dehydrogenase (FDH); in turn, excessive FA triggers Aß aggregation that eventually leads to AD onset. Hence, scavenging FA by astaxanthin (ATX, a strong exogenous antioxidant) may be pursued as a promising disease-modifying approach. Here, we report that liposomal nanoparticles coupled with PEG (PEG-ATX@NPs) could enhance water-solubility of ATX and alleviate cognitive impairments by scavenging FA and reducing Aß deposition. To enable drug delivery to the brain, liposomes were used to encapsulate ATX and then coupled with PEG, which produced liposomal nanoparticles (PEGATX@NPs) with a diameter of <100 nm. The PEG-ATX@NPs reduced Aß neurotoxicity by both degrading FA and reducing FA-induced Aß assembly in vitro. Intraperitoneal administration of PEG-ATX@NPs in APPswe/PS1dE9 mice (APP/PS1, a familial model of AD), not only decreased the levels of brain FA and malondialdehyde (MDA, a typical product of oxidative stress), but also attenuated both intracellular Aß oligomerization and extracellular Aß-related senile plaque (SP) formation. These pathological changes were accompanied by rescued ability of spatial learning and memory. Collectively, PEG-ATX@NPs improved the water-solubility, bioavailability, and effectiveness of ATX. Thus, it has the potential to be developed as a safe and effective strategy for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Xantófilas , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide , Liposomas , Ratones Transgénicos , Fenotipo , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Agua , Xantófilas/administración & dosificación , Xantófilas/química
10.
Biomol Ther (Seoul) ; 31(4): 434-445, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019836

RESUMEN

We investigated whether FTY-720 might have an effect on bleomycin-induced pulmonary fibrosis through inhibiting TGF-ß1 pathway, and up-regulating autophagy. The pulmonary fibrosis was induced by bleomycin. FTY-720 (1 mg/kg) drug was intraperitoneally injected into mice. Histological changes and inflammatory factors were observed, and EMT and autophagy protein markers were studied by immunohistochemistry and immunofluorescence. The effects of bleomycin on MLE-12 cells were detected by MTT assay and flow cytometry, and the related molecular mechanisms were studied by Western Blot. FTY-720 considerably attenuated bleomycin-induced disorganization of alveolar tissue, extracellular collagen deposition, and α-SMA and E-cadherin levels in mice. The levels of IL-1ß, TNF-α, and IL-6 cytokines were attenuated in bronchoalveolar lavage fluid, as well as protein content and leukocyte count. COL1A1 and MMP9 protein expressions in lung tissue were significantly reduced. Additionally, FTY-720 treatment effectively inhibited the expressions of key proteins in TGF-ß1/TAK1/P38MAPK pathway and regulated autophagy proteins. Similar results were additionally found in cellular assays with mouse alveolar epithelial cells. Our study provides proof for a new mechanism for FTY-720 to suppress pulmonary fibrosis. FTY-720 is also a target for treating pulmonary fibrosis.

11.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37895915

RESUMEN

Pulmonary fibrosis may be due to the proliferation of fibroblasts and the aggregation of extracellular matrix, resulting in the stimulation of inflammation damage, destroying lung tissue structure, seriously affecting the patient's respiratory function, and even leading to death. We investigated the role and mechanism of JTE-013 in attenuating bleomycin (BLM)-induced pulmonary fibrosis. BLM-induced pulmonary fibrosis was established in mice. Type 2 alveolar epithelial cells (MLE-12) were stimulated with sphingosine monophosphate (S1P) in vitro. JTE-013, an S1PR2 (sphingosine 1-phosphate receptor 2) antagonist, and Verteporfin were administered in vivo and in vitro. IL-4, IL-5, TNF-α, and IFN-γ were measured by ELISA. IL-4 and IFN-γ positive cells were detected by flow cytometry. Inhibition of S1PR2 with JTE-013 significantly ameliorated BLM-induced pathological changes and inflammatory cytokine levels. JTE-013 also significantly reduced the expression of RHOA/YAP pathway proteins and mitochondrial fission protein Drp1, apoptosis, and the colocalization of α-SMA with YAP, Drp1, and Tom20, as detected by immunohistochemistry, immunofluorescence staining, TUNEL, and Western blot. In vitro, S1PR2 and YAP knockdown downregulated RHOA/YAP pathway protein expression, Drp1 phosphorylation, and Drp1 translocation, promoted YAP phosphorylation and phenotypic transformation of MFN2, and inhibited the up-regulation of mitochondrial membrane potential, reactive oxygen species production, and cell apoptosis (7.13% vs. 18.14%), protecting the integrity of the mitochondrial dynamics. JTE-013 also inhibited the expression of fibrosis markers α-SMA, MMP-9, and COL1A1, and alleviated the symptoms of pulmonary fibrosis. Conclusively, JTE-013 has great anti-pulmonary fibrosis potential by regulating RHOA/YAP and mitochondrial fusion/fission.

12.
Front Immunol ; 14: 1289774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274803

RESUMEN

DEK protein is highly expressed in asthma. However, the mechanism of DEK on mitophagy in asthma has not been fully understood. This study aims to investigate the role and mechanism of DEK in asthmatic airway inflammation and in regulating PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. PINK1-Parkin mitophagy, NLRP3 inflammasome, and apoptosis were examined after gene silencing or treatment with specific inhibitors (MitoTEMPO, MCC950, and Ac-DEVD-CHO) in house dust mite (HDM) or recombinant DEK (rmDEK)-induced WT and DEK-/- asthmatic mice and BEAS-2B cells. The regulatory role of DEK on ATAD3A was detected using ChIP-sequence and co-immunoprecipitation. rmDEK promoted eosinophil recruitment, and co-localization of TOM20 and LC3B, MFN1 and mitochondria, LC3B and VDAC, and ROS generation, reduced protein level of MnSOD in HDM induced-asthmatic mice. Moreover, rmDEK also increased DRP1 expression, PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. These effects were partially reversed in DEK-/- mice. In BEAS-2B cells, siDEK diminished the Parkin, LC3B, and DRP1 translocation to mitochondria, mtROS, TOM20, and mtDNA. ChIP-sequence analysis showed that DEK was enriched on the ATAD3A promoter and could positively regulate ATAD3A expression. Additionally, ATAD3A was highly expressed in HDM-induced asthma models and interacted with DRP1, and siATAD3A could down-regulate DRP1 and mtDNA-mediated mitochondrial oxidative damage. Conclusively, DEK deficiency alleviates airway inflammation in asthma by down-regulating PINK1-Parkin mitophagy, NLRP3 inflammasome activation, and apoptosis. The mechanism may be through the DEK/ATAD3A/DRP1 signaling axis. Our findings may provide new potential therapeutic targets for asthma treatment.


Asunto(s)
Asma , Mitofagia , Animales , Ratones , Dermatophagoides pteronyssinus , ADN Mitocondrial , Inflamasomas/metabolismo , Inflamación , Mitofagia/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Pyroglyphidae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Iran J Allergy Asthma Immunol ; 21(5): 524-536, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36341561

RESUMEN

MicroRNAs (miRNAs) can participate in airway remodeling by regulating immune molecule expression. Here, we aimed to identify the differential miRNAs involved in airway remodeling. Airway remodeling was induced by ovalbumin in female BALB/C mice. The differentially expressed miRNAs were screened with microarray. GO (Gene Ontology) and KEGG enrichment analysis was performed. The miRNA target gene network and miRNA target pathway network were constructed. Verification with real-time PCR and Western blot was performed. We identified 63 differentially expressed miRNAs (50 up-regulated and 13 down-regulated) in the lungs of ovalbumin-induced airway remodeling mice. Real-time PCR confirmed that 3 miRNAs (mmu-miR-1931, mmu-miR-712-5p, and mmu-miR-770-5p) were significantly up-regulated, and 4 miRNAs (mmu-miR-128-3p, mmu-miR-182-5p, mmu-miR-130b-3p, and mmu-miR-20b-5p) were significantly down-regulated. The miRNA target gene network analysis identified key mRNAs in the airway remodeling, such as Tnrc6b (trinucleotide repeat containing adaptor 6B), Sesn3 (sestrin 3), Baz2a (bromodomain adjacent to zinc finger domain 2a), and Cux1 (cut like homeobox 1). The miRNA target pathway network showed that the signal pathways such as MAPK (mitogen-activated protein kinase), PI3K/Akt (phosphoinositide 3-Kinase/protein kinase B), p53 (protein 53), and mTOR (mammalian target of rapamycin) were closely related to airway remodeling in asthma. Collectively, differential miRNAs involved in airway remodeling (such as mmu-miR-1931, mmu-miR-712-5p, mmu-miR-770-5p, mmu-miR-128-3p mmu-miR-182-5p, and mmu-miR-130b-3p) as well as their target genes (such as Tnrc6b, Sesn3, Baz2a, and Cux1) and pathways (such as MAPK, PI3K/Akt, p53, mTOR pathways) have been identified. Our findings may help to further understand the pathogenesis of airway remodeling.


Asunto(s)
MicroARNs , Proteínas Proto-Oncogénicas c-akt , Ratones , Femenino , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ovalbúmina , Proteína p53 Supresora de Tumor , Fosfatidilinositol 3-Quinasas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/genética , Ratones Endogámicos BALB C , MicroARNs/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Perfilación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo
14.
Biochem Pharmacol ; 202: 115106, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35623408

RESUMEN

We investigated whether Panax notoginseng saponin (PNS-R1) attenuates allergic rhinitis (AR) through AMPK/Drp1-mediated mitochondrial fission. AR model was established in mice by Ovalbumin (OVA). In vitro, human nasal epithelial cells (HNEpCs) were stimulated using recombinant human interleukin 13 (IL-13). PNS-R1 was administrated in vivo and in vitro. Then, HE staining of nasal tissue, ELISA detection of immunoglobulin E (IgE) and proinflammatory cytokine levels in serum and nasal lavage fluid, flow cytometry analysis of Th1/Th2 ratio and apoptosis, TUNEL staining, Western blot, detection of reactive oxygen species (ROS) and mitochondrial ROS, immunofluorescence analysis of Tom20 and mitochondrial fission protein Drp1 co-localization, and mitochondrial membrane potential detection, were performed. PNS-R1 attenuated allergic symptoms in AR mice, decreased OVA-specific IgE, IL-4, IL-6, IL-8, IL-13, and TNF-α levels, and restored the Th1/Th2 imbalance. Meanwhile, we found that PNS-R1 treatment significantly reduced apoptosis, ROS production, and co-localization of Tom20 and Drp1 in the nasal epithelium of AR mice. In vitro, we found that PNS-R1 upregulated mitochondrial membrane potential and reduced ROS and mitochondrial ROS production as well as Cleaved-caspase-3/9, Bax, Cyt-c, Apaf-1 expression and mitochondrial fission. Mechanistically, we found that PNS-R1 downregulated Drp1 phosphorylation (Ser 616) and Drp1 translocation in an AMPK-dependent manner, promoted MFN2 expression, and reduced TXNIP, NLRP3, Caspase-1, and IL-1ß expression. PNS-R1 may protect mitochondrial integrity by inhibiting AMPK/Drp1 and TXNIP/NLRP3 signaling pathway, thereby alleviating AR symptoms in mice. PNS-R1 may have great potential as a therapeutic agent for AR.


Asunto(s)
Panax notoginseng , Rinitis Alérgica , Saponinas , Proteínas Quinasas Activadas por AMP , Animales , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina E , Interleucina-13/uso terapéutico , Ratones , Dinámicas Mitocondriales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ovalbúmina , Panax notoginseng/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rinitis Alérgica/inducido químicamente , Rinitis Alérgica/tratamiento farmacológico , Saponinas/farmacología , Saponinas/uso terapéutico
15.
Front Immunol ; 13: 853848, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711428

RESUMEN

Bronchial asthma is characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. MicroRNA (miRNA) has recently been implicated in the pathogenesis of asthma. However, the mechanisms of different miRNAs in asthma are complicated, and the mechanism of miRNA-182-5p in asthma is still unclear. Here, we aim to explore the mechanism of miRNA182-5p in asthma-related airway inflammation. Ovalbumin (OVA)-induced asthma model was established. MiRNA Microarray Analysis was performed to analyze the differentially expressed miRNAs in the asthma model. We found that the expression of miRNA-182-5p was significantly decreased in OVA-induced asthma. In vitro, IL-13 stimulation of BEAS-2B cells resulted in a significant up-regulation of NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4), accompanied by mitochondrial damage-induced apoptosis, NLRP3 (NOD-like receptor family pyrin domain-containing 3)/IL-1ß activation, and reduced miRNA-182-5p. In contrast, overexpression of miRNA-182-5p significantly inhibited epithelial cell apoptosis and NLRP3/IL-1ß activation. In addition, we found that miRNA-182-5p could bind to the 3' untranscripted region of NOX4 mRNA and inhibit epithelial cell inflammation by reducing oxidative stress and mitochondrial damage. In vivo, miRNA-182-5p agomir treatment significantly reduced the percentage of eosinophils in bronchoalveolar lavage fluid, and down-regulated Th2 inflammatory factors, including IL-4, IL-5, and OVA induced IL-13. Meanwhile, miRNA-182-5p agomir reduced the peribronchial inflammatory cell infiltration, goblet cell proliferation and collagen deposition. In summary, targeting miRNA-182-5p may provide a new strategy for the treatment of asthma.


Asunto(s)
Asma , MicroARNs , Animales , Asma/metabolismo , Inflamación/genética , Inflamación/metabolismo , Interleucina-13/genética , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , NADPH Oxidasa 4/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ovalbúmina/efectos adversos
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(2): 103-109, 2022 Feb.
Artículo en Zh | MEDLINE | ID: mdl-35356877

RESUMEN

Objective To investigate the inhibitory effect of DEK targeting aptamer 64 (DTA-64) on airway inflammation and epithelial to mesenchymal transition (EMT) induced by ovalbumin (OVA) in asthmatic mice. Methods Thirty-two female BALB/c mice (8 weeks old) were randomly divided into PBS group, OVA model group, DTA-64 group (1 µg/mouse), and control aptamer group, with 8 in each. HE staining of lung tissues was used to detect inflammatory cell infiltration around the airways; immunohistochemical staining was used to detect DEK expression around the airways; ELISA was used to detect serum IgE, and Th2-type cytokines IL-4, IL-5, IL-13 and Th1-type cytokine IFN-γ in bronchoalveolar lavage fluid (BALF); Western blot was applied to detect the EMT-related proteins α-SMA, Snail+Slug, vimentin, and E-cadherin, and TGF-ß1/Smad, MAPK, PI3K, AKT, as well as mTOR in lung; and flow cytometry was used to observe the α-SMA expression in the lung single cell suspensions. Results DEK protein was highly expressed in the lung tissues of OVA group mice and decreased in the DTA-64 group mice; DTA-64 reduced the infiltration of eosinophils and neutrophils around the airways, down-regulated serum OVA-specific IgE and IL-4, IL-5, IL-13 in BALF, and up-regulated IFN-γ; DTA-64 also reduced the expressions of vimentin, α-SMA, Snail+Slug in the lung tissue, and up-regulated epithelial marker E-cadherin. DTA-64 inhibited the expressions of TGF-ß1 and its downstream canonical pathways Smad2/3 and Smad4, as well as the phosphorylation of non-canonical TGF-ß1 pathways ERK1/2, p38 MAPK, JNK and PI3K/AKT/mTOR. Conclusion DTA-64 may inhibit the airway inflammation and EMT induced by OVA in asthmatic mice via blocking TGF-ß1/Smad, MAPK and PI3K signaling pathways, thereby alleviating airway remodeling in asthma.


Asunto(s)
Asma , Factor de Crecimiento Transformador beta1 , Animales , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Ratones , Ratones Endogámicos BALB C , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
17.
J Agric Food Chem ; 70(16): 4921-4933, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420033

RESUMEN

Bronchial asthma poses a considerable burden on both individual patients and public health. Sesamin is a natural lignan that relieves asthma. However, the potential regulatory mechanism has not been fully validated. In this study, we revealed the mechanism of sesamin in inhibiting airway inflammation of asthma. In cockroach extract (CRE)-induced asthmatic mice, sesamin efficiently inhibited inflammatory cell infiltration, expressions of total and CRE-specific IgE in serum, and inflammatory cytokines (including IL-4, 5, 13) in bronchoalveolar lavage fluid. Further study revealed that sesamin inhibited Th2 cells in the mediastinal lymph nodes and spleen, the expression of PTEN-induced putative kinase 1 (PINK1) and Parkin, and apoptosis of lung airway epithelial cells. In vitro, sesamin had no significant cytotoxicity to BEAS-2B cells. Sesamin significantly increased TNF-α/IL-4-induced superoxide dismutase (SOD), catalase (CAT), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2 related factor 2 (Nrf2), and decreased malondialdehyde. Sesamin also inhibited TNF-α/IL-4-induced mitochondrial reactive oxygen species, increased mitochondrial membrane potential, and reduced cell apoptosis as well as PINK1/Parkin expression and translocation to mitochondria. Conclusively, sesamin may relieve asthma airway inflammation by inhibiting mitophagy and mitochondrial apoptosis. Thus, sesamin may become a potential therapeutic agent for asthma.


Asunto(s)
Asma , Lignanos , Animales , Apoptosis , Asma/tratamiento farmacológico , Asma/genética , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Dioxoles , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Interleucina-4/metabolismo , Lignanos/metabolismo , Pulmón/metabolismo , Ratones , Mitocondrias/metabolismo , Mitofagia , Proteínas Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
Pathol Res Pract ; 234: 153894, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489123

RESUMEN

Macrophages substantially influence the development, progression, and complications of inflammation-driven diseases. Although numerous studies support the critical role of Notch signaling in most inflammatory diseases, there is limited data on the role of Notch signaling in TLR4-induced macrophage activation and interaction of Notch signaling with other signaling pathways in macrophages during inflammation, such as the NF-κB pathway. This study confirmed that stimulation with lipopolysaccharide (LPS), a TLR4 ligand, upregulated Notch1 expression in monocyte/macrophage-like RAW264.7 cells and bone marrow-derived macrophages (BMDMs). LPS also induced increased mRNA expression of Notch target genes Notch1 and Hes1 in macrophages, suggesting that TLR4 signaling enhances activation of the Notch pathway. The upregulation of Notch1, Notch1 intracellular domain (NICD), and Hes1 proteins by LPS treatment was inhibited by DAPT, a Notch1 inhibitor. Additionally, the increased TNF-α, IL-6, and IL-1ß expression induced by LPS was inhibited by DAPT and rescued by jagged1, a Notch1 ligand. Furthermore, suppression of Notch signaling by DAPT upregulated Cylindromatosis (CYLD) expression but downregulated TRAF6 expression, IκB kinase (IKK) α/ß phosphorylation, and subsequently, phosphorylation and degradation of IκB-α, indicating that DAPT inhibited NF-κB activation triggered by TLR-4. Interestingly, DAPT did not inhibit the increased MyD88 expression induced by LPS. Our study findings demonstrate that macrophage stimulation via the TLR4 signaling cascade triggers activation of Notch1 signaling, which regulates the expression patterns of genes involved in pro-inflammatory responses by activating NF-κB. This effect may be dependent on the CYLD-TRAF6-IKK pathway. Thus, Notch1 signaling may provide a therapeutic target against infectious and inflammation-driven diseases.


Asunto(s)
FN-kappa B , Receptor Toll-Like 4 , Humanos , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , Ligandos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Inhibidores de Agregación Plaquetaria/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Receptor Notch1/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/farmacología , Receptor Toll-Like 4/genética
19.
Int Immunopharmacol ; 112: 109243, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36115279

RESUMEN

We investigated the regulatory role of miR-181b-5p in neutrophilic asthma and its mechanisms by targeting DEK. DEK, matrix metalloproteinase (MMP)-2, and MMP-9 were overexpressed and the miR-181b-5p was decreased in mice with neutrophilic asthma. DEK was a direct target of miR-181b-5p. In mouse model, miR-181b-5p agomir had an inhibitory effect on airway inflammation and remodeling. miR-181b-5p inhibited DEK/p-GSK-3ßSer9/ß-catenin/MMP-9 pathway activation by regulating Wnt ligands in BEAS-2B and 16HBE cells. The ability of supernatants from human bronchial epithelial cells (hBECs) co-stimulated with CXCL8 (IL-8) and miR-181b-5p to induce NETs was weaker than that of IL-8 alone. Moreover, DEK overexpression led to excessive mitochondrial dysfunction, including DRP1 up-regulation, p-DRP1ser637 and MFN2 down-regulation, mitochondrial membrane potential loss, excessive mtROS generation and mitochondrial incompleteness. Interestingly, all these phenotypes were rescued by Wnt inhibitor DKK-1 and miR-181b-5p agomir. Additionally, inhibition of DRP1 with Mdivi-1 decreased MMP-9 on BEAS-2B cells. Overall, miR-181b-5p could attenuate neutrophilic asthma through inhibition of NETs release, DEK/p-GSK-3ßSer9/ß-catenin/MMP-9 pathway, DEK/Wnt/DRP1/MMP-9 and mitochondria damage. It may become a new therapeutic target for neutrophilic asthma.


Asunto(s)
Asma , MicroARNs , Proteínas de Unión a Poli-ADP-Ribosa , Animales , Humanos , Ratones , Asma/metabolismo , beta Catenina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/metabolismo , Interleucina-8/metabolismo , Ligandos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
20.
Open Med (Wars) ; 17(1): 1158-1171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859797

RESUMEN

The aim of this study is to investigate the protective effects of glaucocalyxin A (GLA) on airways in mouse models of asthma, concerning the inflammatory mediators, Th1/Th2 subgroup imbalance, and Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Hematoxylin and eosin/periodic acid-Schiff staining was used to observe the pathological changes in lung tissues. Inflammatory cytokine contents in the bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. Protein expression levels were detected with Western blot, immunohistochemistry, and immunofluorescence. In vivo studies showed that, in ovalbumin (OVA)-induced asthmatic mouse models, the GLA treatments reduced the airway hyperresponsiveness and the secretion of inflammatory cells, declined the proliferation of goblet cells, decreased the levels of IL-4, IL-5, and IL-13, and increased the contents of interferon-γ and IL-12. Moreover, GLA inhibited the protein expression levels of TLR4, MyD88, TRAF6, and NF-κB in OVA-induced asthmatic mouse models. Further in vitro studies showed that GLA inhibited the expression of NF-κB, p-IκBα, tumor necrosis factor-α, IL-6, and IL-1ß and blocked the nuclear transfer of NF-κB in lipopolysaccharide-stimulated RAW264.7 macrophages. Conclusively, GLA can inhibit the inflammatory responses in OVA-induced asthmatic mice and inhibit the release of inflammatory factors in LPS-induced RAW264.7 macrophages, which may be related to the inhibition of TLR4/NF-κB signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA