Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(4): 1081-1089, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38227962

RESUMEN

Oral administration of probiotics orchestrates the balance between intestinal microbes and the immune response. However, effective delivery and in situ colonization are limited by the harsh environment of the gastrointestinal tract. Herein, we provide a microfluidics-derived encapsulation strategy to address this problem. A novel synergistic delivery system composed of EcN Nissle 1917 and prebiotics, including alginate sodium and inulin gel, for treating inflammatory bowel disease and colitis-associated colorectal cancer is proposed. We demonstrated that EcN@AN microparticles yielded promising gastrointestinal resistance for on-demand probiotic delivery and colon-retentive capability. EcN@AN microparticles efficiently ameliorated intestinal inflammation and modulated the gut microbiome in experimental colitis. Moreover, the prebiotic composition of EcN@AN enhanced the fermentation of relative short-chain fatty acid metabolites, a kind of postbiotics, to exert anti-inflammatory and tumor-suppressive effects in murine models. This microfluidcis-based approach for the coordinated delivery of probiotics and prebiotics may have broad implications for gastrointestinal bacteriotherapy applications.


Asunto(s)
Colitis , Probióticos , Animales , Ratones , Prebióticos , Microfluídica , Colitis/terapia , Probióticos/uso terapéutico , Inmunidad
2.
Chemistry ; 30(62): e202402485, 2024 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-39225329

RESUMEN

Cancer is a multifaceted disease influenced by both intrinsic cellular traits and extrinsic factors, with the tumor microenvironment (TME) being crucial for cancer progression. To satisfy their high proliferation and aggressiveness, cancer cells always plunder large amounts of nutrients and release various signals to their surroundings, forming a dynamic TME with special metabolic, immune, microbial and physical characteristics. Due to the neglect of interactions between tumor cells and the TME, traditional cancer therapies often struggle with challenges such as drug resistance, low efficacy, and recurrence. Importantly, the development of gene editing technologies, particularly the CRISPR-Cas system, offers promising new strategies for cancer treatment. Combined with nanomaterial strategies, CRISPR-Cas technology exhibits precision, affordability, and user-friendliness with reduced side effects, which holds great promise for profoundly altering the TME at the genetic level, potentially leading to lasting anticancer outcomes. This review will delve into how CRISPR-Cas can be leveraged to manipulate the TME, examining its potential as a transformative anticancer therapy.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Neoplasias , Microambiente Tumoral , Edición Génica/métodos , Humanos , Neoplasias/terapia , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Animales
3.
Langmuir ; 40(3): 1950-1960, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37991242

RESUMEN

Core-shell hydrogel microcapsules have sparked great interest due to their unique characteristics and prospective applications in the medical, pharmaceutical, and cosmetic fields. However, complex synthetic procedures and expensive costs have limited their practical application. Herein, we designed and prepared several multichannel and multijunctional droplet microfluidic devices based on soft lithography for the effective synthesis of core-shell hydrogel microcapsules for different purposes. Additionally, two different cross-linking processes (ultraviolet (UV) exposure and interfacial polymerization) were used to synthesize different types of core-shell structured hydrogel microcapsules. Hydrogel microcapsules with gelatin methacryloyl (GelMA) as the core and polyacrylamide (PAM) as the thin shell were synthesized using UV cross-linking. Using an interfacial polymerization process, another core-shell structured microcapsule with GelMA as the core and Ca2+ cross-linked alginate with polyethylenimine (PEI) as the shell was constructed, and the core diameter and total droplet diameter were flexibly controlled by carving. Noteworthy, these hydrogel microcapsules exhibit stimuli-responsiveness and controlled release ability. Overall, a novel technique was developed to successfully synthesize various hydrogel microcapsules with core-shell microstructures. The hydrogel microcapsules possess a multilayered structure that facilitates the coassembly of cells and drugs, as well as the layered assembly of multiple drugs, to develop synergistic therapeutic regimens. These adaptable and controllable hydrogel microdroplets shall held great promise for multicell or multidrug administration as well as for high-throughput drug screening.


Asunto(s)
Alginatos , Hidrogeles , Hidrogeles/química , Cápsulas/química , Alginatos/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química
4.
J Nanobiotechnology ; 22(1): 566, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272206

RESUMEN

Breast cancer is the most common malignant tumor that threatens women's life and health, and metastasis often occurs in the advanced stage of breast cancer, leading to pathological bone destruction and seriously reducing patient quality of life. In this study, we coupled chlorin e6 (Ce6) with mono-(6-amino-6-deoxy)-beta-cyclodextrin (ß-CD) to form Ce6-CD, and combined ferrocene with the FFVLG3C peptide and PEG chains to form the triblock molecule Fc-pep-PEG. In addition, the IDO-1 inhibitor NLG919 was loaded with Ce6-CD and Fc-pep-PEG to construct the supramolecular nanoparticle NLG919@Ce6-CD/Fc-pep-PEG (NLG919@CF). After laser irradiation, Ce6 produced robust reactive oxidative species to induce tumor cell apoptosis. Simultaneously, ferrocene became charged, and Fc-pep-PEG dissociated from the spherical nanoparticles, enabling their transformation into nanofibers, which increased both the retention effect and the induction of ferroptosis. The released NLG919 reduced the number of regulatory T cells (Tregs) and restored the function of cytotoxic T lymphocytes (CTLs) by inhibiting the activity of IDO-1. Moreover, combined administration with an anti-PD-1 antibody further relieved immune suppression in the tumor microenvironment. This article presents a new strategy for the clinical treatment of breast cancer with bone metastasis and osteolysis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Neoplasias Óseas/secundario , Neoplasias Óseas/tratamiento farmacológico , Humanos , Animales , Ratones , Línea Celular Tumoral , Porfirinas/química , Porfirinas/uso terapéutico , Porfirinas/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Clorofilidas , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Nanopartículas/química , Compuestos Ferrosos/química , Compuestos Ferrosos/uso terapéutico , Terapia de Inmunosupresión/métodos
5.
Drug Dev Ind Pharm ; : 1-13, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39259031

RESUMEN

OBJECTIVE: This research aims to improve the bioavailability and anti-hepatocellular carcinoma (HCC) efficacy of Ginsenoside Rg3 by modification with poly (lactic acid hydroxyacetic acid)-poly(ethylene glycol) (PLGA-PEG). METHODS: PLGA-PEG-Rg3 was obtained by emulsification and evaluated it physiochemical characterization by FTIR, SEM, laser particle-size analyzer and HPLC. The effect of the PLGA-PEG-Rg3 and Rg3 on HepG2 cells was compared in vitro studies, including cell proliferation, transwell and a series of apoptosis detection, and in-situ HCC model. RESULTS: The PLGA-PEG-Rg3 were 122 nm in size and 0.112 in polydispersity index with sustained release profile in vitro. Compared to Rg3, PLGA-PEG-Rg3 was more effective in suppressing HepG2 growth and inducing apoptosis by the mitochondrial apoptosis pathway in vitro. And PLGA-PEG modification enhanced the liver-targeting ability and drug circulation time of Rg3 in vivo, resulting in PLGA-PEG-Rg3 possessing superior performance in inhibiting tumor growth and prolonging the survival time of tumor-bearing mice than Rg3. CONCLUSIONS: Overall, these results showed PLGA-PEG-Rg3 enhanced the anti-tumor effect of Rg3 in HCC.

6.
Nano Lett ; 23(17): 8081-8090, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615340

RESUMEN

Since central cells are more malignant and aggressive in solid tumors, improving penetration of therapeutic agents and activating immunity in tumor centers exhibit great potential in cancer therapies. Here, polydopamine-coated Escherichia coli Nissle 1917 (EcN) bearing CRISPR-Cas9 plasmid-loaded liposomes (Lipo-P) are applied for enhanced immunotherapy in deep tumors through activation of innate and adaptive immunity simultaneously. After accumulation in the tumor center through hypoxia targeting, Lipo-P could be detached under the reduction of reactive oxygen species (ROS)-responsive linkers, lowering the thermal resistance of cancer cells via Hsp90α depletion. Owing to that, heating induced by polydopamine upon near-infrared irradiation could achieve effective tumor ablation. Furthermore, mild photothermal therapy induces immunogenic cell death, as bacterial infections in tumor tissues trigger innate immunity. This bacteria-assisted approach provides a promising photothermal-sensitized immunotherapy in deep tumors.


Asunto(s)
Neoplasias , Probióticos , Humanos , Sistemas CRISPR-Cas/genética , Inmunoterapia , Neoplasias/terapia , Escherichia coli/genética , Liposomas
7.
Angew Chem Int Ed Engl ; 63(2): e202316007, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38017308

RESUMEN

Psoriasis is a chronic skin inflammation characterized by dysregulated crosstalk between immune cells and keratinocytes. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a key regulator of psoriatic inflammation in a mouse model. Platinum-doped positively charged carbon dots (Pt-CDs) were designed to inhibit the cGAS-STING pathway. By inhibiting the cGAS-STING pathway with Pt-CDs, the secretion of proinflammatory cytokines in macrophages was reduced, and the proinflammatory cytokines-induced breakdown of immunological tolerance and overexpression of chemokines in keratinocytes was restored, which reversed the homeostatic imbalance through breaking these cytokines-mediated intercellular positive feedback loop. Topical Pt-CDs treatment exhibited therapeutic effects in imiquimod-induced psoriasis mice without noticeable toxicity. The reversal of elevated expression of STING, phosphorylated STING, and downstream genes within psoriatic lesions indicates that Pt-CDs effectively inhibit the cGAS-STING pathway. This work suggests a promising strategy for psoriasis treatment by targeting the cGAS-STING pathway with Pt-CDs nanoinhibitor to restore skin homeostatic balance.


Asunto(s)
Psoriasis , Transducción de Señal , Ratones , Animales , Nucleotidiltransferasas/metabolismo , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Psoriasis/tratamiento farmacológico
8.
Angew Chem Int Ed Engl ; 63(28): e202404493, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38687277

RESUMEN

Timely detection of early-stage cancer holds immense potential in enhancing prognostic outcomes. There is an increasing desire for versatile tools to enable simple, sensitive, and cost-effective cancer detection. By exploiting the extraintestinal metabolic inertness and efficiency renal clearance of sucrose, we designed a liposome nanosensor using sucrose as a messenger to convert tumor-specific esterase activity into glucose meter readout, enabling economical and sensitive urinalysis for cancer detection in point-of-care testing (POCT). Our results demonstrate that the nanosensors exhibited significant signal differences between tumor-bearing and healthy mice in both orthotopic and metastatic tumor models. Additionally, efficient elimination of the nanosensors through the hepatobiliary pathway was observed with no significant toxicity. Such a non-invasive diagnostic modality significantly assists in personalized pharmacological treatment and follow-up efficacy assessment. We envision that this modular liposome nanosensor platform might be applied for economically detecting diverse diseases via a simple urinary test.


Asunto(s)
Liposomas , Sacarosa , Liposomas/química , Animales , Ratones , Sacarosa/química , Sacarosa/orina , Humanos , Técnicas Biosensibles , Neoplasias/diagnóstico , Glucosa/análisis , Glucosa/metabolismo , Urinálisis
9.
Anal Chem ; 95(2): 1618-1626, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36541937

RESUMEN

CRISPR/Cas12a shows excellent potential in disease diagnostics. However, insensitive signal conversion strategies hindered its application in detecting protein biomarkers. Here, we report a metal-organic framework (MOF)-based DNA bio-barcode integrated with the CRISPR/Cas12a system for ultrasensitive detection of protein biomarkers. In this work, zirconium-based MOF nanoparticles were comodified with antibodies and bio-barcode phosphorylated DNA as an efficient signal converter, which not only recognized the protein biomarker to form the sandwich complex but also released the bio-barcode DNA activators after MOF dissociation to activate the trans-cleavage activity of Cas12a. Due to the obvious advantages, including numerous loaded oligonucleotides, a convenient release process, and the nontoxic release reagent, this MOF-DNA bio-barcode strategy could amplify the CRISPR/Cas12a system to achieve simple and highly sensitive detection of tumor protein biomarkers with detection limits of 0.03 pg/mL (PSA) and 0.1 pg/mL (CEA), respectively. Furthermore, this platform could detect PSA directly in clinical serum samples, offering a powerful tool for early disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Sistemas CRISPR-Cas/genética , Biomarcadores de Tumor/genética , ADN , Anticuerpos
10.
Mol Pharm ; 20(9): 4743-4757, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37579048

RESUMEN

Currently, the low survival rate and poor prognosis of patients with nasopharyngeal carcinoma are ascribed to the lack of early and accurate diagnosis and resistance to radiotherapy. In parallel, the integration of imaging-guided diagnosis and precise treatment has gained much attention in the field of theranostic nanotechnology. However, constructing dual-modal imaging-guided nanotheranostics with desired imaging performance as well as great biocompatibility remains challenging. Therefore, we developed a simple but multifunctional nanotheranostic GdCPP for the early and accurate diagnosis and efficient treatment of nasopharyngeal carcinoma (NPC), which combined fluorescence imaging and magnetic resonance imaging (MRI) onto a single nanoplatform for imaging-guided subsequent photodynamic therapy (PDT). GdCPP had an appropriate particle size (81.93 ± 0.69 nm) and was highly stable, resulting in sufficient tumor accumulation, which along with massive reactive oxygen species (ROS) generation upon irradiation further significantly killed tumor cells. Moreover, GdCPP owned much stronger r1 relaxivity (9.396 mM-1 s-1) compared to clinically used Gd-DTPA (5.034 mM-1 s-1) and exhibited better T1WI MRI performance. Under dual-modal imaging-guided PDT, GdCPP achieved efficient therapeutic outcomes without causing any noticeable tissue damage. The results of in vitro and in vivo studies indicated that GdCPP may be a suitable candidate for dual-modal imaging-guided precision tumor therapy.


Asunto(s)
Nanopartículas , Neoplasias Nasofaríngeas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/tratamiento farmacológico , Imagen por Resonancia Magnética/métodos , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/tratamiento farmacológico , Línea Celular Tumoral
11.
Am J Otolaryngol ; 44(5): 103964, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37392727

RESUMEN

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a chronic and common sleep-breathing disease that could negatively influence lives of patients and cause serious concomitant diseases. Polysomnography(PSG) is the gold standard for diagnosing OSAHS, but it is expensive and requires overnight hospitalization. Snoring is a typical symptom of OSAHS. This study proposes an effective OSAHS screening method based on snoring sound analysis. Snores were labeled as OSAHS related snoring sounds and simple snoring sounds according to real-time PSG records. Three models were used, including acoustic features combined with XGBoost, Mel-spectrum combined with convolution neural network (CNN), and Mel-spectrum combined with residual neural network (ResNet). Further, the three models were fused by soft voting to detect these two types of snoring sounds. The subject's apnea-hypopnea index (AHI) was estimated according to these recognized snoring sounds. The accuracy and recall of the proposed fusion model achieved 83.44% and 85.27% respectively, and the predicted AHI has a Pearson correlation coefficient of 0.913 (R2 = 0.834, p < 0.001) with PSG. The results demonstrate the validity of predicting AHI based on analysis of snoring sound and show great potential for monitoring OSAHS at home.


Asunto(s)
Apnea Obstructiva del Sueño , Ronquido , Humanos , Ronquido/diagnóstico , Ronquido/etiología , Polisomnografía/métodos , Sueño , Síndrome
12.
Nano Lett ; 22(23): 9714-9722, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36412588

RESUMEN

CRISPR/Cas12a has shown great potential in molecular diagnostics, but its application in sensing of microRNAs (miRNAs) was limited by sensitivity and complexity. Here, we have sensitively and conveniently detected microRNAs by reasonably integrating metal-organic frameworks (MOFs) based biobarcodes with CRISPR/Cas12a assay (designated as MBCA). In this work, DNA-functionalized Zr-MOFs were designed as the converter to convert and amplify each miRNA target into activators that can initiate the trans-cleavage activity of CRISPR/Cas12a to further amplify the signal. Such integration provides a universal strategy for sensitive detection of miRNAs. By tuning the complementary sequences modified on nanoprobes, this assay achieves subattomolar sensitivity for different miRNAs and was selective to single-based mismatches. With the proposed method, the expression of miR-21 in different cancer cells can be assessed, and breast cancer patients and healthy individuals can be differentiated by analyzing the target miRNAs extracted from serum samples, holding great potential in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Estructuras Metalorgánicas , MicroARNs , Humanos , Femenino , MicroARNs/genética , Sistemas CRISPR-Cas/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Diferenciación Celular
13.
Angew Chem Int Ed Engl ; 62(50): e202313968, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37884479

RESUMEN

Macrophage phagocytosis of tumor cells has emerged as an attractive strategy for tumor therapy. Nevertheless, immunosuppressive M2 macrophages in the tumor microenvironment and the high expression of anti-phagocytic signals from tumor cells impede therapeutic efficacy. To address these issues and improve the management of malignant tumors, in this study we developed a gene-editable palladium-based bioorthogonal nanoplatform, consisting of CRISPR/Cas9 gene editing system-linked Pd nanoclusters, and a hyaluronic acid surface layer (HBPdC). This HBPdC nanoplatform exhibited satisfactory tumor-targeting efficiency and triggered Fenton-like reactions in the tumor microenvironment to generate reactive oxygen species for chemodynamic therapy and macrophage M1 polarization, which directly eliminated tumor cells, and stimulated the antitumor response of macrophages. HBPdC could reprogram tumor cells through gene editing to reduce the expression of CD47 and adipocyte plasma membrane-associated protein, thereby promoting their recognition and phagocytosis by macrophages. Moreover, HBPdC induced the activation of sequestered prodrugs via bioorthogonal catalysis, enabling chemotherapy and thereby enhancing tumor cell death. Importantly, the Pd nanoclusters of HBPdC were sufficiently cleared through basic metabolic pathways, confirming their biocompatibility and biosafety. Therefore, by promoting macrophage phagocytosis, the HBPdC system developed herein represents a highly promising antitumor toolset for cancer therapy applications.


Asunto(s)
Neoplasias , Paladio , Humanos , Paladio/farmacología , Paladio/metabolismo , Línea Celular Tumoral , Macrófagos/metabolismo , Fagocitosis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Microambiente Tumoral/genética
14.
Angew Chem Int Ed Engl ; 62(31): e202302000, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37147187

RESUMEN

Colonization of cancer cells at secondary sites, a decisive step in tumor metastasis, is strongly dependent on the formation of metastatic microenvironments regulated by intrinsic single-cell metabolism traits. Herein, we report a single-cell microfluidic platform for high-throughput dynamic monitoring of tumor cell metabolites to evaluate tumor malignancy. This microfluidic device empowers efficient isolation of single cells (>99 %) in a squashed state similar to tumor extravasation, and employs enzyme-packaged metal-organic frameworks to catalyze tumor cell metabolites for visualization. The microfluidic evaluation was confirmed by in vivo assays, suggesting that the platform allowed predicting the tumorigenicity of captured tumor cells and screening metabolic inhibitors as anti-metastatic drugs. Furthermore, the platform efficiently detected various aggressive cancer cells in unprocessed whole blood samples with high sensitivity, showing potential for clinical application.


Asunto(s)
Estructuras Metalorgánicas , Técnicas Analíticas Microfluídicas , Neoplasias , Humanos , Microfluídica , Análisis de la Célula Individual , Línea Celular Tumoral , Microambiente Tumoral
15.
Angew Chem Int Ed Engl ; 62(37): e202306863, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37485554

RESUMEN

CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy. First, selective in vivo metabolic labeling of cancer and activation of the cGAS-STING pathway was achieved simultaneously through tumor microenvironment (TME)-biodegradable hollow manganese dioxide (H-MnO2 ) nano-platform. Subsequently, CRISPR/Cas9 system-loaded liposome was accumulated within the modified tumor tissue through in vivo click chemistry, resulting in the loss of protein tyrosine phosphatase N2 (PTPN2) and further sensitizing tumors to immunotherapy. Overall, our strategy provides a modular platform for precise gene editing in vivo and exhibits potent antitumor response by boosting innate and adaptive antitumor immunity.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Compuestos de Manganeso , Óxidos , Neoplasias/terapia , Inmunoterapia , Edición Génica/métodos , Microambiente Tumoral/genética
16.
Small ; 18(40): e2204244, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055775

RESUMEN

As a promising therapeutic modality targeting cancer, gas therapy still faces critical challenges, especially in enhancing therapeutic efficacy and avoiding gas poisoning risks. Here, a pH/glutathione (GSH) dual stimuli-responsive CRISPR/Cas9 gene-editing nanoplatform combined with calcium-enhanced CO gas therapy for precise anticancer therapy, is established. In the tumor microenvironment (TME), the fast biodegradation of the CaCO3 layer via pH-induced hydrolyzation allows glucose oxidase (GOx) to catalyze glucose for H2 O2 production, which further reacts with manganese carbonyl (MnCO) and achieves the precise release of CO gas. Simultaneously, in situ Ca2+ overload from CaCO3 degradation disturbs mitochondrial Ca2+ homeostasis, resulting in Ca2+ -driven reactive oxygen species (ROS) formation and subsequent mitochondrial apoptosis signaling pathway activation. Subsequently, by GSH-induced cleavage of a disulfide bond, the released Cas9/sgRNA (RNP) can achieve nuclear factor E2-related factor 2 (Nrf2) gene ablation to sensitize gas therapy by interfering with ROS signaling. This therapeutic modality endows codelivery of CRISPR, ions, and gas with smart control features, which demonstrates great potential for future clinical applications in precise nanomedicine.


Asunto(s)
Nanopartículas , Neoplasias , Calcio , Monóxido de Carbono/uso terapéutico , Línea Celular Tumoral , Disulfuros , Edición Génica/métodos , Glucosa , Glucosa Oxidasa , Glutatión , Humanos , Iones , Manganeso , Factor 2 Relacionado con NF-E2/uso terapéutico , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
17.
Small ; 18(45): e2203942, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36156383

RESUMEN

As a promising therapeutic strategy against cancer, immunotherapy faces critical challenges, especially in solid tumors. Immune checkpoint blockade therapy, particularly blocking the interaction of the programmed cell death 1 (PD1)-PD1 ligand 1 (PD-L1) axis, can reverse the suppression of T cells so as to destroy tumor cells and exert antitumor effects. Here, a strategy of multiple activation of immune pathways is developed, to provide supporting evidence for potential antitumor therapies. Briefly, a pH/glutathione responsive drug-loading hollow-manganese dioxide (H-MnO2 )-based chlorine6 (Ce6)-modified DNAzyme therapeutic nanosystem for the combination of gene therapy and immunotherapy is established. The H-MnO2 nanoparticles could efficiently deliver the DNAzyme and glycyrrhizic acid (GA) to enhance the tumor target effects. In the tumor microenvironments, the biodegradation of H-MnO2 via pH-induced hydrolyzation allows the release of guest DNAzyme payloads and host Mn2+ ions, which serve as PD-L1 mRNA-targeting reagent and require DNAzyme cofactors for activating gene therapy. In addition, Mn2+ is also associated with the immune activation of thcGAS-STING pathway. Auxiliary photosensitizers Ce6 and GA could produce reactive oxygen species, resulting in immunogenic cell death. Overall, this study provides a general strategy for targeted gene inhibition and GA release, which is valuable for the development of potential tumor immunotherapies.


Asunto(s)
ADN Catalítico , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Compuestos de Manganeso , Antígeno B7-H1 , ADN Catalítico/metabolismo , Óxidos , Fotoquimioterapia/métodos , Sistema de Administración de Fármacos con Nanopartículas , Neoplasias/terapia , Inmunoterapia/métodos , Microambiente Tumoral , Línea Celular Tumoral
18.
Analyst ; 147(11): 2500-2507, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35537204

RESUMEN

A simple aptazyme-induced cascade signal amplification (denoted as ACSA) was integrated with a triple-channel volumetric bar-chart chip (TV-Chip) to visually quantitate aflatoxin B1 (AFB1) and adenosine triphosphate (ATP). Bifunctional aptazymes consisting of aptamers and G-quadruplex-forming sequences were modified on magnetic silica nanoparticles (MSNPs) to construct sensing probes. The recognition of aptamers and targets leads to the formation of hemin/G-quadruplex (hGQ) DNAzymes, which can mimic the horseradish peroxidase (HRP)-accelerated signal enhancement reaction, enabling the polymerization of dopamine and subsequent deposition of polydopamine (PDA) on the MSNP probes, thereby providing abundant anchor sites to covalently immobilize numerous 4-mercaptophenylboric acid (4-MPBA)-modified platinum nanoparticles (PtNPs) (MPt). As a result, this strategy possesses high sensitivity by introducing a large number of PtNPs into the TV-Chip. The detection limits of AFB1 and ATP with 0.075 pM and 0.818 pM, respectively, were easily achieved without any additional instruments. In addition, the detection results of AFB1-spiked food samples were in good agreement with the commercial AFB1 ELISA kit, which verified the accuracy and reliability of this method. The ACSA-based TV-Chip would show great promise for on-site and real-time visual quantitation of trace targets.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Adenosina Trifosfato/análisis , Aflatoxina B1/análisis , Límite de Detección , Platino (Metal) , Reproducibilidad de los Resultados
19.
Mikrochim Acta ; 189(4): 139, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275267

RESUMEN

Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.


Asunto(s)
Técnicas Analíticas Microfluídicas , Nanoestructuras , Biomarcadores , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Microfluídica
20.
Nano Lett ; 21(5): 2001-2009, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33591201

RESUMEN

Small extracellular vesicles (sEVs) are increasingly recognized as noninvasive diagnostic markers for many diseases. Hence, it is highly desirable to isolate sEVs rapidly for downstream molecular analyses. However, conventional methods for sEV isolation (such as ultracentrifugation and immune-based isolation) are time-consuming and expensive and require large sample volumes. Herein, we developed artificial magnetic colloid antibodies (MCAs) via surface imprinting technology for rapid isolation and analysis of sEVs. This approach enabled the rapid, purification-free, and low-cost isolation of sEVs based on size and shape recognition. The MCAs presented a higher capture yield in 20 min with more than 3-fold enrichment of sEVs compared with the ultracentrifugation method in 4 h. Moreover, the MCAs also proposed a reusability benefiting from the high stability of the organosilica recognition layer. By combining with volumetric bar-chart chip technology, this work provides a sensitive, rapid, and easy-to-use sEV detection platform for point-of-care (POC) diagnostics.


Asunto(s)
Vesículas Extracelulares , Anticuerpos , Coloides , Fenómenos Magnéticos , Pruebas en el Punto de Atención
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA