Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(13): 9931-9939, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38482988

RESUMEN

Multifunctional thermally activated delayed fluorescence (TADF) materials are currently a trending research subject for luminescence layer materials of organic light-emitting diodes (OLEDs). Among these, circularly polarized thermally activated delayed fluorescence (CP-TADF) materials have the advantage of being able to directly achieve highly efficient circularly polarized luminescence (CPL). The simultaneous integration of outstanding luminescence efficiency and excellent luminescence asymmetry factor (glum) is a major constraint for the development of CP-TADF materials. Therefore, on the basis of first-principles calculations in conjunction with the thermal vibration correlation function (TVCF) method, we study CP-TADF molecules with different donors to explore the feasibility of using the donor substitution strategy for optimizing the CPL and TADF properties. The results indicate that molecules with the phenothiazine (PTZ) unit as the donor possess small energy difference, a great spin-orbit coupling constant and a rapid reverse intersystem crossing rate, which endow them with remarkable TADF features. Meanwhile, compared with the reported molecules, the three designed molecules exhibit better CPL properties with higher glum values. Effective molecular design strategies by donor engineering to modulate the CPL and TADF properties are theoretically proposed. Our findings reveal the relationship between molecular structures and luminescence properties of CP-TADF molecules and further provide theoretical design strategies for optimizing the CPL and TADF properties.

2.
Phys Chem Chem Phys ; 26(9): 7706-7717, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372336

RESUMEN

Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) have attracted much attention in recent years because of their ability to simultaneously reduce the energy difference (ΔEST) and enlarge the spin-orbit coupling (SOC). In this paper, 40 molecules are theoretically designed by changing the different substitution positions of the donors and acceptors, and systematically investigated based on the first-principles calculations and excited-state dynamics study. It is found that the emission wavelengths of v-shaped molecules with intramolecular TSCT are larger than those of the molecules without TSCT. Therefore, the intramolecular TSCT can induce the red-shift of the emission and realize the deep-red/near-infrared emission. Besides intramolecular TSCT can simultaneously increase the SOC as well as the oscillator strength and reduce the ΔEST. In addition, PXZ or PTZ can also favor the realization of smaller ΔEST and red-shift emission. Our calculations suggest that intramolecular TSCT and suitable donors (-PXZ or -PTZ) are an effective strategy for the design of efficient deep red/near-infrared TADF emitters.

3.
J Phys Chem A ; 128(17): 3241-3252, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38650082

RESUMEN

As a typical thermally activated delayed fluorescence (TADF) emitter with green emission, 4CzIPN has attracted much attention recently. Most studies indicated that 4CzIPN doped in different hosts presented different performances; thus, the hosts should have an obvious influence on its photophysical properties. Herein, the influence of four kinds of hosts, including m-CzPym, m-CzTrz, p-CzPym, and p-CzTrz, on the photophysical properties of 4CzIPN is investigated. Molecular dynamics simulations were performed to simulate the host-guest conformations, and the photophysical properties were studied using the combined quantum mechanics/molecular mechanics method coupled with the thermal-vibration correlation function method. It is found that 4CzIPN in doped films has larger transition dipole moments and spin-orbital coupling constants compared to that in nondoped films. Faster radiative decay, intersystem crossing rates, and higher fluorescence efficiency could be obtained in doped films. Our work helps to better understand the photophysical properties of 4CzIPN in doped films and may favor the design of new hosts.

4.
Phys Chem Chem Phys ; 25(34): 23207-23221, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37605930

RESUMEN

Stimulus-responsive organic room temperature phosphorescence (RTP) materials with long lifetimes, high efficiencies and tunable emission properties have broad applications. However, the amounts and species of efficient RTP materials are far from meeting the requirements and the inner stimulus-responsive mechanisms are unclear. Therefore, developing efficient stimulus-responsive RTP materials is highly desired and the relationship between the molecular structures and luminescent properties of RTP materials needs to be clarified. Based on this point, the influences of different substitution sites of Br on the luminescent properties of RTP molecules are studied by the combined quantum mechanics and molecular mechanics (QM/MM) coupled with thermal vibration correlation function (TVCF) theory. Moreover, the hydrostatic pressure effect on the efficiencies and lifetimes is explored and the inner mechanism is illustrated. The results show that, for the exciton conversion process, the o-substitution molecule possesses the largest spin-orbit coupling (SOC) value (〈S1|Hso|T1〉) in the intersystem crossing (ISC) process and this is conducive to the accumulation of triplet excitons. However, for the energy consumption process, the large SOC value (〈S0|Hso|T1〉) for the p-substitution molecule brings a fast non-radiative decay rate, and the small SOC value for the m-substitution molecule generates a decreased non-radiative decay rate which is helpful for realizing long lifetime emission. Keeping with this perspective, the conflict between high exciton utilization and long RTP emission needs to be balanced rather than enhancing the SOC effect by simply adding heavy atoms in RTP systems. Through regulating the molecular stacking modes by the hydrostatic pressure effect, the inner stimulus-responsive mechanism is revealed. The data of 〈S1|Hso|T1〉 in the ISC process remain almost unchanged, while 〈S0|Hso|T1〉 values and transition dipole moments are sensitive to the hydrostatic pressure. Under 1 GPa, the RTP molecule achieves a maximum efficiency (81.17%) and long lifetime (2.72 ms) with the smallest SOC and decreased non-radiative decay rate. To our knowledge, this is the first time that the hydrostatic pressure responsive mechanism for RTP molecules is revealed from a theoretical perspective, and the relationships between molecular structures and luminescent properties are detected. Our work could facilitate the development of high performance RTP molecules and expand their applications in multilevel information encryption.

5.
Phys Chem Chem Phys ; 25(2): 1032-1044, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36537471

RESUMEN

Red and near-infrared (NIR) thermally activated delayed fluorescence (TADF) molecules show excellent potential applications in organic light-emitting diodes (OLEDs). Due to the lack of systematic studies on the relationship between molecular structures and luminescence properties, both the species and amounts of red and NIR TADF molecules are far from meeting the requirements for practical applications. Herein, four new efficient molecules (DQCN-2spAs, TPCN-2spAs, DPCN-2spAs and BPCN-2spAs) are proposed and their photophysical properties are theoretically predicted based on first-principles calculations and thermal vibration correlation function (TVCF) theory. The results show that all molecules exhibit red or NIR emissions and they have fast radiative decay rates and reverse intersystem crossing (RISC) rates, and the excellent TADF luminescence properties are predicted. Moreover, based on spiro-acridine (spAs) as the donor unit, the combination with different acceptors can change the dihedral angle between the ground state and the excited state, the bending degree of the donor is positively correlated with the reorganization energy, and this feature can have a great influence on the non-radiative process. Furthermore, based on these theoretical predictions, experimental verifications are performed and the synthesized BPCN-2spAs is confirmed to be an efficient NIR TADF molecule. Thus, the relationships between basic molecular structures and photophysical properties are revealed, a feasible design strategy is applied and four promising red and NIR TADF molecules are proposed. All these results could contribute to the development of red and NIR TADF emitters and OLEDs.

6.
Phys Chem Chem Phys ; 25(9): 6659-6673, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794480

RESUMEN

Organic room temperature phosphorescence (RTP) has been widely investigated to realize long-lifetime luminescent materials and improvement in their efficiency is a key focus of research, especially for red and near-infrared (NIR) RTP molecules. However, due to the lack of systematic studies on the relationship between basic molecular structures and luminescence properties, both the species and amounts of red and NIR RTP molecules remain far from meeting the requirements of practical applications. Herein, based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations, the photophysical properties of seven red and NIR RTP molecules in tetrahydrofuran (THF) and in the solid phase were theoretically studied. The excited state dynamic processes were investigated by calculating the intersystem crossing and reverse intersystem crossing rates considering the surrounding environmental effects in THF and in the solid phase using a polarizable continuum model (PCM) and quantum mechanics and molecular mechanics (QM/MM) method, respectively. The basic geometric and electronic data were obtained, Huang-Rhys factors and reorganization energies were analyzed, and natural atomic orbital was used to calculate the orbital information of the excited states. Simultaneously, the electrostatic potential distribution on molecular surfaces was analyzed. Further, intermolecular interactions were visualized using the molecular planarity binding independent gradient model based on Hirshfeld partition (IGMH). The results showed that the unique molecular configuration has the potential to achieve red and NIR RTP emission. Not only did the substitutions of halogen and sulfur make the emission wavelength red-shifted, but also linking the two cyclic imide groups could further make the emission wavelength longer. Moreover, we found that the emission characteristics of molecules in THF had a similar trend as in the solid phase. Based on this point, two new RTP molecules with long emission wavelengths (645 nm and 816 nm) are theoretically proposed and their photophysical properties are fully analyzed. Our investigation provides a wise strategy to design efficient and long-emission RTP molecules with an unconventional luminescence group.

7.
Phys Chem Chem Phys ; 25(36): 24406-24416, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37621260

RESUMEN

Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules with narrow full width at half maximum (FWHM) have attracted much attention recently. In this work, 36 borane/amine (B/N) type MR-TADF molecules were theoretically designed by using an intramolecular-lock strategy and systematically studied based on first-principles calculations. It was found that intramolecular-lock at different positions and in different manners could induce different luminescent properties. The calculated oscillator strengths for PXZ-L2 and PTZ-L2 locking systems are weaker than that for 2DPABN (without intramolecular-lock), while the Cz-L1 and TMCZ-L1 locking could result in stronger oscillator strength. Though the calculated FWHM of all the systems with intramolecular-lock is higher than that of 2DPABN, the Cz, TMCz and DMAC locking at L1 or L2 would induce relatively small FWHM which is comparable to that of 2DPABN. Our calculation results indicate that intramolecular-lock could enhance the SOC values and decrease the energy gap between the first singlet excited state and the first triplet excited state, which is quite favorable to reverse intersystem crossing. The Cz, TMCz and DMAC locking systems could realize comparable and higher efficiency than 2DPABN, thus higher quantum efficiency could be obtained. Our calculation results indicate that the intramolecular-lock strategy is an effective method to realize the design of highly efficient MR-TADF emitters.

8.
Phys Chem Chem Phys ; 25(24): 16613-16625, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37310714

RESUMEN

Fluorescent probes with a microsecond lifetime have attracted much attention in biological detection. The luminescence properties and responsive mechanisms of a probe [DCF-MPYM-lev-H]- for detecting sulfite and its corresponding product [DCF-MPYM-2H]2- are studied based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations as well as the thermal vibration correlation function method. It is found that the luminescence efficiency of the probe increases obviously after reacting with sulfite, which is induced by increased radiative decay rates and decreased nonradiative rates. In addition, the thermally activated delayed fluorescence (TADF) properties of products are confirmed by analyzing the spin-orbital constants and energy gaps between the singlet excited states and the triplet excited states. The calculation results favor the understanding of the luminescence properties and responsive mechanism of a turn-on TADF probe for sulfite, which may provide a theoretical reference for the development of new TADF probes.

9.
J Chem Phys ; 158(22)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37306955

RESUMEN

A precise analytical potential energy surface (PES) of HCO(X2A') is fitted from a great quantity of ab initio energy points computed with the multi-reference configuration interaction method and aug-cc-pV(Q/5)Z basis sets. The whole energy points extrapolated to the complete basis set limit are fitted by the many-body expansion formula. The calculated topographic characteristics are analyzed and compared with the existing work to prove the precision of the present HCO(X2A') PES. By utilizing the time-dependent wave packet and quasi-classical trajectory methods, the reaction probabilities, integral cross sections, and rate constants are computed. The results are compared in detail with the former results carried out on the other PES. Moreover, the provided information on stereodynamics leads to an in-depth understanding of the role of collision energy in product distribution.

10.
Opt Lett ; 47(1): 5-8, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951868

RESUMEN

An ytterbium-doped stretched-pulse mode-locked fiber oscillator was fabricated by applying a nonlinear amplifier loop mirror (NALM). The fiber cavity was built using a large-mode area (LMA) polarization-maintaining (PM) double-cladding (DC) fiber. The central wavelength of the generated 24.7 MHz laser can be modified from 1034 to 1104 nm by tuning the intra-cavity loss. The output power of this laser with a wavelength of 1104 nm at the transmission and reflection ports is 7.61 and 0.33 mW, respectively. The corresponding compressed pulse durations are 192 and 187 fs, which are 1.54 and 1.02 times the Fourier-transform-limited pulse duration, respectively.

11.
Phys Chem Chem Phys ; 24(13): 7759-7767, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35293900

RESUMEN

An accurate many-body expansion potential energy surface for the ground state of SiH2 is reported. To warrant the correct behavior at the Si (1D) + H2 (X1Σ+g) dissociation channels involving silicon in the first excited Si (1D) and ground Si (3P) states, a switching function formalism has been utilized. A great deal of ab initio points based on aug-cc-pV(Q+d)Z and aug-cc-pV(5+d)Z basis sets are utilized at the multi-reference configuration interaction level using the full-valence-complete-active-space wave function as the reference. Subsequently the calculated energies are corrected via a many-body expansion method to extrapolate to the complete basis set limit. The topographic features of the novel many-body expansion global potential energy surface are studied in detail, showing a good agreement with the theoretical and experimental results in the literature. Moreover, the integral cross-section of the Si (1D) + H2 (X1Σ+g) → H (2S) + SiH (X2Π) reaction has been calculated using the time-dependent wave packet method, which provides support for the reliability of the title potential energy surface. This work can serve as the foundation for the study of Si (1D) + H2 (X1Σ+g) reaction kinetics, and for the construction of the larger multibody expansion potential energy surface of silicon/hydrogen containing systems.

12.
Phys Chem Chem Phys ; 24(43): 26764-26775, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36314451

RESUMEN

Thermally activated delayed fluorescence (TADF) molecules with deep-red (DR) and near-infrared (NIR) luminescence show great potential in biomedical sensing/imaging and telecommunications. However, developing efficient DR- and NIR-TADF molecules remains a powerful challenge, and new design strategies are highly desired. Based on 2,3-bis(4-(diphenylamino)phenyl)quinoxaline-5,8-dicarbonitrile (CNQ-TPA), two novel TADF molecules CNQ-b-TPA and CNQ-f-TPA are theoretically constructed through the design strategy of molecular bonding and molecular fusion. The photophysical properties and luminescence mechanisms of the three molecules in toluene and the crystal state are revealed with first-principles calculations and the thermal vibration correlation function (TVCF) method. Compared with CNQ-TPA, CNQ-b-TPA and CNQ-f-TPA can achieve an effective red-shift of intrinsic emission and efficient DR and NIR emission. Remarkably, molecular bonding and molecular fusion not only greatly increase the oscillator strength, but also effectively reduce the energy gap between the first singlet excited state (S1) and the first triplet excited state (T1), resulting in their high radiative and reverse intersystem crossing rate. Moreover, the charge transport properties are studied based on kinetic Monte Carlo simulations. Molecular bonding to balance charge transport is found, enabling ambipolar transport properties. Our work provides a feasible solution to overcome the design limitations of previous DR- and NIR-TADF materials and predicts good candidates for both DR- and NIR-TADF emitters.

13.
Phys Chem Chem Phys ; 24(2): 1007-1015, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34927636

RESUMEN

The global potential energy surface (PES) of HCS+(X1Σ+) is constructed using many-body expansion (MBE) methodology. The obtained analytical function is found by fitting the 7907 ab initio energy points computed at the Davidson-corrected multi-reference configuration interaction level with the aug-cc-pV(5+d)Z basis set. The final root mean square error is 0.0419 eV, and the maximum deviation is 0.2039 eV, showing that the analytical formula agrees well with the energy points. The topological features are calculated and discussed based upon the analytical PES of HCS+(X1Σ+). The reaction probability, integral cross sections and other details of the C+(2P) + SH(X2Π) → H(2S) + CS+(X2Σ+) reaction are investigated using the quasi-classical trajectory and time-dependent quantum wave packet methods.

14.
Phys Chem Chem Phys ; 24(28): 17140-17154, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35791916

RESUMEN

Orange and red thermally activated delayed fluorescence (TADF) emitters have shown promising applications in organic light emitting diodes (OLEDs) and the bio-medical field. However, both the species and amounts of orange and red molecules are far from meeting the requirement for practical applications; this is due to the lack of systematic studies on the relationship between molecular structures and luminescence properties. Herein, the excited state dynamic processes and photophysical properties of six donor-acceptor (D-A) type orange-red TADF molecules, which possess the same acceptor, are theoretically studied in toluene by using the polarizable continuum model (PCM). Based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations coupled with the thermal vibration correlation function (TVCF) method, the adiabatic singlet-triplet energy gaps, natural transition orbital properties, reorganization energies, hole and electron distributions, and the radiative and non-radiative as well as the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes are theoretically analyzed. The results indicate that remarkable geometric changes between the lowest singlet excited state (S1) and the ground state (S0) are mainly caused by the rotation of the donor unit for NAI-R2, NAI-R3 and NAI-DPAC, and the reorganization energy is mainly contributed by the dihedral angle. However, for NAI-DMAC, BTDMAc-NAI and BFDMAc-NAI, remarkable geometric changes are found in the acceptor unit with large contribution of reorganization energy by bond length. These variations bring different non-radiative energy consumption processes. Moreover, small energy gaps between S1 and the lowest triplet excited state (T1) are determined for all studied molecules and an efficient RISC process is detected. Furthermore, enhanced conjugacy in the donor unit and remarkable intramolecular interactions are determined for BTDMAc-NAI and BFDMAc-NAI, which is helpful to promote the up-conversion process. Our investigations give reasonable explanations for previous experimental measurements and the relationship between basic structures and luminescence properties is revealed, which could facilitate the development of new efficient TADF emitters.

15.
Phys Chem Chem Phys ; 24(37): 22905-22917, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36124903

RESUMEN

Ultralong organic phosphorescence (UOP) has broad application prospects in many fields, but realizing its high quantum efficiency is still full of challenges. One of the main reasons is that the internal luminescence mechanism is unclear and theoretical investigations to reveal the inner structure-property relationship are highly desired. Herein, the internal mechanism of halogen bonding enhancing the quantum efficiency of UOP is studied through the combination of quantum mechanics and molecular mechanics methods coupled with the thermal vibration correlation function (TVCF) method. Geometric and electronic data are obtained by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Transition properties, energy gaps, intermolecular interactions, excited state dynamics as well as Huang-Rhys factors and reorganization energies are analyzed in detail. The results show that the high phosphorescence quantum efficiency benefits from the fast intersystem crossing (ISC) process and the slow non-radiative decay process. The halogen bonding, which cooperates with the effects of aromatic carbonyl and heavy atoms, not only accelerates the ISC rate by increasing the spin-orbit coupling effect, but also restricts the molecular motion and reduces the non-radiative energy consumption. Furthermore, through wise molecular design, an efficient UOP molecule with fast ISC and slow non-radiative decay rates is proposed. This work provides an insight into realizing efficient UOP emission via intramolecular halogen bonding.

16.
Opt Express ; 29(15): 23786-23798, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614637

RESUMEN

The wavelength-related optical nonlinearities of few-layer Mg-MOF-74 nanosheets were investigated in the wavelength region around 1.08, 1.94, and 2.85 µm by the closed aperture Z-scan, open aperture Z-scan and I-scan method. Under the excitation of 100-µJ laser pulses, the nonlinear refractive index (n2) of -7.7 ± 2.6, -131 ± 5 and 4.9 ± 0.2 cm2/W were obtained, respectively. The wavelength-related optical nonlinearity of the Mg-MOF-74 nanosheet was also investigated. In 2.85 µm wavelength region, the Mg-MOF-74 nanosheets shows a stable saturable absorption property with a modulation depth of 8% and a saturation intensity of 170 mJ/cm2. In the 1.08 and 1.94 µm wavelength regions, we can observe that the Mg-MOF-74 transits from saturable absorption regime to reverse saturable absorption regime with the increasing incident laser intensity. Employed as a saturable absorber in a Er:Lu2O3 laser, Mg-MOF-74 nanosheet shows a thickness-related laser modulation performance. The shortest laser pulse of 284-ns was achieved under a repetition rate of 116 kHz with a 6-nm-thick Mg-MOF-74 nanosheet, which corresponds to a pulse energy of 3.2 µJ and a peak power of 11.4 W.

17.
Opt Lett ; 46(6): 1385-1388, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720193

RESUMEN

We proposed a passively stabilized Q-switched Er:Lu2O3 laser at 2845 nm, applying a MXene Nb2CTx nanosheets saturable absorber prepared by the liquid-phase exfoliation method. The surface morphology and nonlinear properties of this nanosheet were systematically characterized. Average output power of 542 mW for the Q-switched laser was obtained under 7.26 W of absorbed pump power. Meanwhile, the Q-switched pulse duration was measured to be 223.7 ns with 142.9 kHz repetition rate corresponding to a peak power of 16.96 W.

18.
J Phys Chem A ; 125(25): 5490-5498, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34137628

RESUMEN

A full three-dimensional global potential energy surface (PES), covering the whole configuration space, is reported first for the title system by fitting high-level ab initio energies at the multireference configuration interaction level with the aug-cc-pV6Z basis set. In this work, the many-body expansion method is invoked to fit the innate character of the CH2+(12A″) PES. The topographical features are examined in detail based on the new global PES and in accordance with the other calculations from the ab initio energies, which show the correct behavior at the C+(2P) + H2(X1Σg+) and CH+(a3Π) + H(2S) dissociation limits. Using a time-dependent wave packet method, we provide insights into the dynamics behavior for reaction of C+(2P) + H2(X1Σg+) → CH+(a3Π) + H(2S). The integral cross sections and reaction probabilities increase monotonically in terms of the collision energy.

19.
J Phys Chem A ; 125(1): 175-186, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33373223

RESUMEN

The development of efficient sky-blue thermally activated delayed fluorescence (TADF) emitters is highly desired. However, the types and amounts of sky-blue TADF are far from meeting the requirements, and effective molecular design strategies are expected. Herein, the photophysical properties and excited-state dynamics of 12 molecules are theoretically studied based on the thermal vibration correlation function method. Distributions of holes and electrons are analyzed by the heat maps. The frontier molecular orbital distribution, adiabatic singlet-triplet energy gap, and reorganization energy are analyzed in detail. Furthermore, the radiative and non-radiative as well as the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes are studied, and the up-conversion process is illustrated. Our results indicate that different substitution positions and numbers play an important role in the luminescence properties of TADF molecules. The meta-position substitutions restrict the geometry variations, hinder the non-radiative energy consumption process, and promote the radiative process of TADF molecules. Meanwhile, molecules with ortho-position substitutions possess the smallest energy gaps (ΔEst) and the largest RISC rates. Moreover, molecules with the substitutions of one tBCz group and two PO groups have the smallest ΔEst and the largest spin orbital coupling. Thus, a wise molecular design strategy, namely, ortho-position substitutions as well as substitutions with one tBCz group and two PO groups, is proposed to facilitate the RISC process. Based on this rule, new efficient TADF molecules are theoretically designed and proposed. Our work reasonably elucidates the experimental measurements, and the effects of different substitution numbers and positions of secondary acceptors on TADF properties are highlighted, which could provide a theoretical perspective for designing efficient sky-blue TADF molecules.

20.
BMC Surg ; 21(1): 137, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731072

RESUMEN

BACKGROUND: To analyze whether neoadjuvant chemoradiotherapy (nCRT) could improve the survival for patients with adenocarcinoma of the esophagogastric junction compared with neoadjuvant chemotherapy (nCT). Both neoadjuvant chemotherapy alone and chemoradiotherapy before surgery have been shown to improve overall long-term survival for patients with adenocarcinoma in the esophagus or esophagogastric junction compared to surgery alone. It remains controversial whether nCRT is superior to nCT. METHODS: 170 Patients with locally advanced (cT3-4NxM0) Siewert II and III adenocarcinoma of the esophagogastric junction (AEG) were treated with neoadjuvant chemotherapy consisting of capecitabine plus oxaliplatin with or without concurrent radiotherapy in the Fourth Hospital of Hebei Medical University. Intensity-modulated radiation therapy (IMRT) was used and delivered in 5 daily fractions of 1.8 Gy per week for 5 weeks (total dose of PTV: 45 Gy). 120 Patients were included in the propensity score matching (PSM) analysis to compare the effects of nCRT with nCT on survival. RESULTS: With a median follow-up of 41.2 months for patients alive after propensity score matching analysis, the 1- and 3-year OS were 84.8%, 55.0% in nCRT group and 78.3%, 38.3% in nCT group (P = 0.040; HR = 1.65, 95% CI 1.02-2.69). The 1- and 3-year PFS were 84.9%, 49.2% in nCRT group and 68.3%, 29.0% in nCT group (P = 0.010; HR = 1.80, 95% CI 1.14-2.85). The pathological complete response (pCR) was 17.0% in nCRT group and 1.9% in nCT group (P = 0.030). No significant difference was observed in postoperative complications between the two groups. CONCLUSION: The nCRT confers a better survival with improved R0 resection rate and pCR rate compared with nCT for the patients with locally advanced AEG.


Asunto(s)
Adenocarcinoma/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioradioterapia/métodos , Neoplasias Esofágicas/terapia , Terapia Neoadyuvante/métodos , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adulto , Anciano , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Unión Esofagogástrica/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Puntaje de Propensión , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA