Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomech Eng ; 138(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26548948

RESUMEN

Two-dimensional echocardiography (echo) is the method of choice for noninvasive evaluation of the left ventricle (LV) function owing to its low cost, fast acquisition time, and high temporal resolution. However, it only provides the LV boundaries in discrete 2D planes, and the 3D LV geometry needs to be reconstructed from those planes to quantify LV wall motion, acceleration, and strain, or to carry out flow simulations. An automated method is developed for the reconstruction of the 3D LV endocardial surface using echo from a few standard cross sections, in contrast with the previous work that has used a series of 2D scans in a linear or rotational manner for 3D reconstruction. The concept is based on a generalized approach so that the number or type (long-axis (LA) or short-axis (SA)) of sectional data is not constrained. The location of the cross sections is optimized to minimize the difference between the reconstructed and measured cross sections, and the reconstructed LV surface is meshed in a standard format. Temporal smoothing is implemented to smooth the motion of the LV and the flow rate. This software tool can be used with existing clinical 2D echo systems to reconstruct the 3D LV geometry and motion to quantify the regional akinesis/dyskinesis, 3D strain, acceleration, and velocities, or to be used in ventricular flow simulations.


Asunto(s)
Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Imagenología Tridimensional/métodos , Animales , Automatización , Ventrículos Cardíacos/patología , Humanos , Análisis Espacio-Temporal , Porcinos
2.
J Biomech Eng ; 137(11): 114501, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26312776

RESUMEN

The left ventricle function is to pump the oxygenated blood through the circulatory system. Ejection fraction is the main noninvasive parameter for detecting heart disease (healthy >55%), and it is thought to be the main parameter affecting efficiency. However, the effects of other parameters on efficiency have yet to be investigated. We investigate the effect of heart rate and left ventricle shape by carrying out 3D numerical simulations of a left ventricle at different heart rates and perturbed geometries under constant, normal ejection fraction. The simulation using the immersed boundary method provide the 3D flow and pressure fields, which enable direct calculation of a new hemodynamic efficiency (H-efficiency) parameter, which does not depend on any reference pressure. The H-efficiency is defined as the ratio of flux of kinetic energy (useful power) to the total cardiac power into the left ventricle control volume. Our simulations show that H-efficiency is not that sensitive to heart rate but is maximized at around normal heart rate (72 bpm). Nevertheless, it is more sensitive to the shape of the left ventricle, which affects the H-efficiency by as much as 15% under constant ejection fraction.


Asunto(s)
Frecuencia Cardíaca , Ventrículos Cardíacos/anatomía & histología , Modelos Cardiovasculares , Función Ventricular Izquierda , Hemodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA